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Dynamika sieti je kapitola z knihy Umela inteligencia a kognitivna veda Il, editori Kvasnicka,
Pospichal, Navrat, Lacko ,Trebaticky, vydalo STU 2010, ISBN 978-80-227-3284-0, moja kapitola je na
stranach 321 az 377.

Abstrakt. Kapitola pojednava o teodrii takych sieti, v ktorych sa pocet uzlov s casom meni.
Nazyvame ich dynamickymi siet'ami. Vlastnosti a Struktura dynamickych sieti sa podobaju sietam,
ktoré vytvaraju prirodzené samoorganizované procesy (socialne siete, www, internet), preto
modelovanie dynamiky sieti je dolezité nielen z teoretickéhho, ale z aj z praktického hl'adiska. V tejto
praci popisujem dynamiku zakladnych modelov rasticich sieti a na zaklade matematickej analyzy
jednotlivych modelov poukazujem na fakt, ze kone¢na Struktira siete vel'mi zavisi od spoésobu, akym
sa siet’ v Case meni. S dynamickymi procesmi v sieti stvisi aj hierarchické usporiadanie uzlov.
V dal$ich Castiach prezentujem modely, ktoré objasiuju ako mdze teoria sieti prispiet’ k pochopeniu
Struktury sieti zndmych z praxe. PoukdZem tiez na to, ¢o maju mnohé realne siete spolo¢né. V zavere

konkrétnejsie popiSem rozne aplikacie teorie sieti a perspektivy d’alSieho vyskumu.

1. Uvodné poznamky

Informatik sa vel'mi ¢asto potyka so sietami tak v tedrii, ako aj v praxi. Urcite vyhl'adava
informacie na internetovej sieti, alebo posiela maily. MoZzno ma aj vlastni www stranku, na
ktorej prezentuje svoju pracu. Na nej moze, napriklad, umiestnit odkazy na iné, prenho,
alebo pre jeho spolupracovnikov zaujimavé stranky. Aj mnohé informatické teoretické
problémy suvisia so siet’ami. Patri k nim tedria Sirenia signalov po siet’ach, kde sa zaujimame,
ako musia byt rozmiestnené prijimace, vysielace alebo zosilnovace signalu, aby to, na jednej
strane, nebolo neekonomické, ale aby sme zaroven zachovali dostatocénu kvalitu signélu.
Mo6zZe naés tiez zaujimat’ odolnost’ interentovej, alebo aj inych sieti, vo¢i ndhodnym poruchdm,
¢i cielenym utokom. MozZno, napriklad, potrebujeme vediet, akéd Struktira siete je voci

porucham a itokom najodolnejsia.



So sietami sa vSak nestretdvaji len informatici. Inzinieri spravuji cestné siete,
elektrické siete, ¢i siete dopravnych komunikdcii a tiez ich potrebuji optimalizovat’ tak, aby
plnili svoju tlohu, ale zaroven neboli predimenzované. Cestné siet’ méa byt dostatocne husta,
aby pokryla potreby dopravy, ale na druhej strane by pre krajinu nemala byt ekologickou
a ekonomickou zatazou. Telefénna siet’ a mobilna siet’ ma umoziovat komunikaciu medzi

I'ud’mi, mé byt’ aj dostatoCne stabilnd a spolahliva, ale zaroven nie prili§ draha.

Vidime, ze cely civilizovany svet je nejakym sposobom ,,zosietovany®. Preto sa
v poslednych desiatich rokoch zacali o siete zaujimat' aj vedci zinych, od informatiky
vzdialenych, vednych odborov [1, 2, 3, 4]. Biologovia aj informatici uz niekol’ko desatroci
skiimaji neurénovu siet’ mozgu [4]. Donedévna nebolo vel'a moznosti skiimat’, do akej miery
procesy myslenia stvisia s tym, ako st neurény pospajané. Nevedelo sa ako sietova Struktura
mozgu ovplyviiuje jeho schopnosti. Neboli na to nastroje a ani vhodna tedria. S rozvojom
teorie dynamickych sieti, sa mnozili pokusy Studovat’ mozog novymi metédami. Pomohli
tomu aj také neinvazivne techniky ako je funkénd magnetickda rezonancia (fimri) [5].
Skumaji sa aj iné biologické siete, ako napriklad interakéné siete proteinov [6] a tiez, v
spolupraci so psychologmi a kognitivnymi vedcami, aj socialne siete a jazykové siete [2, 7,
8]. Pozornost, nielen z teoretického, ale aj praktického hl'adiska, putaji ad hoc siete. To s
také, ktoré sa vytvarajii v ohrani¢enom c¢ase a potom zanikaju. Patria k nim napriklad funkéné
siete mozgu [3]. Ich vyskum je priamo zavisly na zdokonalovani zachytdvania signdlov
mozgu pomocou funkénej magnetickej rezonancie [5]. Signdly z mozgu ziskané touto
technikou ukazuju, ze ak mozog kona nejaku kognitivnu tlohu, niektoré oblasti mozgove;j
kory pracujii synchronne, aj ked’ moZno nie s priamo prepojené pomocou neurdénov. Tieto
tvoria takzvanu funkénu siet’, ktorda ma, ako sa ukazuje, vlastnosti podobné vlastnostiam inych

prirodzenymi procesmi vznikajucich sieti [9, 10, 33].

Ked’Zze matematickou reprezentaciou siete je graf, clovek, ktory sa chce vazne venovat
teorii dynamickych sieti, musi sa nutne potykat’ s tedriou grafov [11]. Na druhej strane, siet’
do ktorej pribudaju alebo z nej ubudaju uzly, je vlastne dynamickym systémom. Dynamické
systétmy Studuje fyzika [12]. Matematicky ich moZno popisat pomocou diferenénych,
diferencidlnych, alebo dokonca integro — diferencidlnych rovnic. Preto, ak chceme robit
v teorii dynamickych sieti seriézny vyskum, musime sa venovat aj spomenutym oblastiam

matematiky a fyziky.



Mnoho praktickych problémov mozno vyriesit pomocou modelov rasticich sieti, ktoré
si vlastne integro — diferencialnymi rovnicami. Toto zjednodusenie, totiz Ze uzly do siete
hlavne pribudaju a pocet uzlov, ktoré sa zo siete strdcaji je vocCi nim zanedbatelny, je
z hl'adiska praxe opodstatnené. Preto sa v tejto Casti knihy budeme venovat’ hlavne rastucim
dynamickym sietam. Rastiicou sietou je, napriklad, internet — o tom zrejme nikoho netreba
osobitne presviedcat’. Neustdle do nej pribudaju novi ucastnici a ich pocet d’aleko prevysuje
podet tych, ktori sa od internetu odpoja. Daliie zjednoduienie, ktoré urobime, je takéto:
Predstavme si, Ze ak ndhodne vyberieme dva uzly siete, hrana medzi nimi bud’ existuje, alebo
neexistuje. Tieto siete nazyvame bindrnymi. Aj ked hovorim o zjednoduseni, dafam, ze vas
presved¢im, ze aj vyskum binarnych sieti prindSa zaujimavé problémy, ale aj otazky a

praktické poznatky.

Celd praca je rozdelend takto: V druhej casti sa budem venovat zakladnym
vlastnostiam grafov. V tretej zasa popiSem redlne siete a ich vlastnosti a vo Stvrtej ¢asti, na
priklade zadkladnych modelov ukdzem, ako vlastnosti sieti suvisia s ich dynamikou, teda so
sposobom rastu tej ktorej siete. Budeme sa zaoberat’ modelom s ndhodnym a preferencnym
pripajanim uzlov a tiezZ modelom sieti so zrychlenym rastom. Podkapitola pét je venovana
niektorym lokdlnym procesom, ktoré ovplyviiuju vlastnosti a Struktiru sieti a hierarchické
usporiadanie uzlov. V Siestej podkapitole pojedndm o aplikaciach tedrie sieti. Siedma Cast’

poukaZe na to, aké su perspektivy a moznosti d’alSieho vyskumu.

2. Kratky pohPad do tedrie grafov

V tejto Casti kratko nahliadneme do matematickej teorie grafov. Zavediem v nej niekol’ko
nevyhnutnych zékladnych pojmov a vztahov. Teoria grafov je v suCasnosti vel'mi rozvinutou
oblastou matematiky, a preto toto pojednanie v Ziadnom pripade neméZe byt vycerpavajuce.
Tych, ktori by potrebovali obsiahlejSie informécie, odkazujem na bohatu literatiru z tedrie

grafov, napriklad na vybornt knihu Introduction to Graph Theory od D. B. Westa [11].

Graf G je definovany pomocou dvoch mnozin; mnoziny vrcholov V(G) a mnoziny hran
E(G). Pokial' nebude povedané inak, budeme tieto mnoziny povazovat za konec¢né. Prvkami
mnoziny V(G) st vrcholy grafu (resp. identifikdtory vrcholov grafu), prvkami mnoZiny E(G)
st usporiadané dvojice. Ak je hrana grafu orientovand, potom prvym ¢lenom dvojice je

identifikator vrcholu, z ktorého hrana vychadza, druhym c¢lenom identifikétor vrcholu, do



ktorého hrana vchadza. Takéto hrany, s fixnym poradim vrcholov v usporiadanej dvojici,
nazyvame orientované. Ak neexistuje na hrane preferovany smer, na poradi vrcholov

v usporiadanej dvojici nezalezi. Vrcholy zvykneme nazyvat’ aj uzlami grafu.

Na obrazku la vidime graf. Ma jednu slucku, teda hranu, ktord zac¢ina aj kon¢i na tom
istom uzle. Ak dva uzly spéja viacero hran, hovorime o viacndsobnej hrane. Prerusovanou
kruznicou je oznaceny jeden z podgrafov nasho grafu. Jedna z hran grafu na obrazku 1 je

orientovand, jej orientacia je oznacena Sipkou.
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Obrazok 1. Graf a jeho prvky. a) Graf so sluckou a ndsobnou hranou. b) Jednoduchy graf.

Pod pojmom jednoduchy graf rozumieme taky graf, ktory nema viacndsobné hrany ani
ziadne slucky. Priklad jednoduchého grafu je na obrazku 1b. Vznikol z grafu na obrazku la

vymazanim nasobnych hran a sluciek.



Na obrazku 2 vidime dalsi priklad orientovaného grafu, kde vsetky hrany maju

preferovany smer. Kazdému uzlu mozno priradit’ jeho stupen. Stuperi uzla x, k_, predstavuje
sucet poctu hran, ktoré do uzla vchadzaja, alebo z neho vychadzaju. Takéto hrany nazyvame
incidentnymi s vrcholom x. V orientovanom grafe rozoznavame pocet hran k!, ktoré do uzla
x vchadzaju a pocet hran k2, ktoré z uzla x vychadzaji. Potom stupeii uzla x , k_, je dany
sa¢tom  k =k" + k. V dalsom texte, pokial nebude povedané inak, uvazujeme len

neorientované grafy.

X

Obrazok 2. Orientovany graf. Uzol x mé stupeit k" =1, k% =2 ateda k_=3.

Pod bipartitnym grafom rozumieme taky graf, ktorého mnozinu uzlov V(G) mdézeme
rozdelit’ na dve dizjunktné podmnoziny (particie) ¥;(G), V,(G) kde V(G)=V,(G)UV,(G) je
zjednotenim oboch mnozin. Hrany existuju len medzi uzlami z r6znych particii (obrazok 3).
Ako priklad moZze sluzit’ graf, v ktorom v jednej particii su l'udia a v druhej particii ich

zamestnania. Hrana existuje vtedy, ak ¢lovek mal v Zivote dané zamestnanie.

Vi(G) | 7,(6)



Obrazok 3. Bipartitny graf. Hrany medzi uzlami existuju len vtady ak uzly patria do dvoch ré6znych

podmnozin mnoziny vrcholov V(G).

Pod pojmom kompletny graf, rozumieme taky neorientovany jednoduchy graf, kde st
uzly poprepdjané hranamy sposobom kazdy s kazdym. Dva jednoduché neorientované grafy
nazyvame komplementarnymi, ak maju rovnaky pocet uzlov a po stotozneni uzlov ich hrany
vytvoria kompletny graf. Pod komplementom grafu G rozumieme teda taky graf G’, ktory

ma rovnaky pocet uzlov ako graf G a je komplementarny ku G.

Matematicky mozno grafy reprezentovat’ réznymi sposobmi, napriklad pomocou
matice susednosti, alebo pomocou incideniénej matice. Riadky aj stipce matice susednosti
oznacuju vrcholy a prvky matice susednosti reprezentuju pocty hran medzi jednotlivymi
dvojicami vrcholov. Riadky inciden¢nej matice oznaluju uzly a stipce hrany. Prvok matice
ma hodnotu 7/ ak je dand hrana incidentnd s danym uzlom (teda v pripade orientovanych
grafov z neho vychéadza, alebo doitho vchadza) a maji hodnotu 0 v opacnom pripade. Matica

susednosti a inciden¢na matica pre graf na obrazku 2 je:

- matica susednosti - inciden¢na matica
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Samozrejme, s mozné aj in¢€ reprezentacie, ktoré¢ vyzdvihuja d’alSie vlastnosti grafov.
Tak napriklad, ak odhliadneme od poctu hran medzi dvoma uzlami v matici susednosti
a upravime prvky matice tak, aby boli rovné jednej ak existuje hrana medzi dvoma uzlami
anule ak nie, dostaneme binarnu maticu susednosti. Ak od matice susednosti od¢itame
diagonalnu maticu, ktorej diagondlne prvky obsahuji stupenn prislusného uzla, ziskame
Laplaceovu maticu. Jej riadky a stipce sa sumuji na nulu a obsahuje informacie jednak o tom
ako st rozlozené hrany v grafe, jednak o tom, ako dobre su zapojené jednotlivé vrcholy. Ak sa
chceme nieCo dozvediet' o Struktare najkratSich vzdialenosti medzi uzlami, m6Zeme graf
reprezentovat’ pomocou matice vzdialenosti. Riadky a stipce tejto matice st vrcholy a prvky
matice predstavuji najmensi pocet hran, ktory treba prejst’ aby sme sa od jedného vrcholu

dostali k inému. Ak graf nie je orientovany, tdto matica je symetricka.

Dva neorientované grafy G a H su izomorfné, ak dokdzeme najst’ také vzajomne
jednoznacné zobrazenie, ktoré zobrazi vSetky uzly grafu G na uzly grafu H a vSetky hrany

grafu G na hrany grafu H. Plati, Ze hrana medzi dvoma vrcholmi v grafe G existuje vtedy a



len vtedy, ked existuje aj medzi ich obrazmi v H. Matice susednosti oboch grafov su
rovnaké, ak upravime Cislovanie vrcholov. Graf sa nazyva samokomplementirnym, ak je
izomorfny so svojim komplementom. Grafy modzeme zaradovat do izomorfnych tried,
ktorymi su, napriklad, cesty na n uzloch, cykly na n uzloch a podobne. Pocet jednoduchych
grafov, ktoré mézeme vytvorit’ na mnozine n rozliSenych uzlov je dany vztahom m = 2(2] .
Od jedného uzlu grafu k inému sa pohybujeme po hrandch. Ak maji orientaciu, pohyb
je mozny len v jej smere, ak nie, mdzeme sa pohybovat’ oboma smermi. Sled je taky pohyb po
grafe, ktory moze opakovat’ hrany aj vrcholy, zatial’ ¢o pri ahu sa hrany opakovat’ nesmul.
Eulerovsky t’ah prejde cez vSetky hrany prave raz. Ak graf ma cestu, potom sa musime po
hranach pohybovat’ tak, aby sa ani vrcholy ani hrany neopakovali. Neorientovany graf je
suvisly, ak existuje cesta medzi kazdou dvojicou rozdielnych vrcholov. Znama Eulerova veta
tvrdi, Ze suvisly graf ma uzavrety eulerovsky t'ah (t.j. prvy a posledny vrchol tahu je rovnaky)
prave vtedy, ked’ vSetky vrcholy su parneho stupiia. Je tomu tak preto, lebo ak tah neopakuje
hrany, jednou hranou do vrcholu vchiddzame a druhou z neho vychddzame. Maximdlny
suvisly komponent grafu G je taky podgraf, ktory je suvisly a nie je obsiahnuty v ziadnom

inom suvislom podgrafe grafu G.

Stupenn uzla x, k_, je jednou zo zakladnych veliCin, ktoré v grafe meriame.

Neorientovany graf G je k — reguldrny, ak stupne vSetkych jeho uzlov st rovnaké a maja

hodnotu k. Ked’ s¢itame stupne vSetkych uzlov grafu zistime, ze

2.1)

M=
ke
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Q
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V rovnici (2.1) N je pocet uzlov v grafe G a e oznauje pocet hran. Tuto hodnotu dostaneme
napriklad aj z Laplaceovej matice grafu, ked scitame jej zadporne vzaté diagondlne prvky.

Casto sa pocita priemerny stupeii uzla v grafe:

1
<@_N2h. (2.2)

Pod najkratSou cestou medzi dvoma uzlami grafu myslime tu, ktord prechadza
najmensim po¢tom hran. O tom, ako maju k sebe uzly ,,daleko* vypovedd miera nazyvana

priemernou vzdialenost’ou, alebo separdciou uzlov v grafe. Pre velké grafy sa separacia



uzlov pocita ako priemernd hodnota najkratSich vzdialenosti pre ndhodne volené dvojice

uzlov.

O tom, ako dobre je prepojené okolie uzla x vypoveda jeho klasterizacny koeficient

C,, ktory je pomerom poctu skuto¢ne existujucich hran medzi susedmi uzla x a poctu hran,

ktoré by medzi susedmi boli, keby susedstvo uzla x tvorilo kompletny graf:

C =—=*_, 2.3)

V rovnici (2.3) e, je pocet skutocne existujucich hran medzi susedmi uzla x a k_ je stupen
o oo (k) (ke =1k, S .
uzla x a teda aj pocet jeho susedov. Plati tiez, ze 5|~ — Klasteriza¢ny koeficient

C celého grafu G je priemernou hodnotou klasteriza¢nych koeficientov vSetkych uzlov

cC=—>¢C, (2.4)

1 N
NET
kde N je celkovy pocet uzlov grafu a C, je klasterizacny koeficient uzla i dany vztahom (2.3).

Ak chceme Strukturu grafu popisat’ presnejSie, nevystaCime len s priemernymi
hodnotami ako st klasterizaény koeficient C (2.4) a priemerny stupen uzla <k> (2.2). Viacej

nam onej povie rozdelenie stupiia uzlov a rozdelenie klasterizacnych koeficientov.
Rozdelenie stupiia uzlov je funkcia, ktora opisuje, ako sa normovany pocet uzlov majucich
stupen k, meni s hodnotou k. Mo6Ze napriklad vyzerat’ tak, ako na obrazku 4, alebo napriklad
aj tak, ako na obrazku 9. Podobne rozdelenie klasteriza¢nych koeficientov je funkcia, ktora

opisuje, ako sa priemerny klasterizacny koeficient C, uzlov majucich stupeil k meni

s veli¢inou k. Neskor uvidime, Ze obe tieto distribucie vel'mi uzko suvisia s dynamikou

a Struktarou siete.

Dolezitym pojmom v tedrii grafov je nahodny graf. Prieclom do tedrie nahodnych
grafov urobili Erdos a Rényi a svoje vysledky zverejnili v zndmej praci On random graphs
[13]. Erdos a Rényi v praci definuji dva modely ndhodnych grafov. Nazvime ich model

A a model B.



V modeli A médme dany pocet uzlov N a definovanu prevdepodobnost’ p, ze zvolena

dvojica uzlov je spojena hranou. Kazdy graf o e hranach sa vyskytuje s pravdepodobnostou

N
G,=p° (1 - p)( 2j_e . Nahodny graf typu B ma uréeny pocet uzlov N a pocet hran e, ktorymi

P(K)=N(K)/N

Obrazok 4. Rozdelenie stupiia uzlov v grafe. Na osi x je stupen uzla a na osi y pocet uzlov, ktoré

maju stupeilt £ normovany na celkovy pocet uzlov grafu. Zobrazujeme v dvojitej logaritmickej Skale,

teda v linearnej Casti sa distribucia sprava podla vztahu P(k)oc k7.
su uzly ndhodne poprepdjané. Oba modely maju v limite velkého poctu uzlov rovnaké

N
vlastnosti, ak pravdepodobnost’ p = e/ ( 5 ] .

Podla Erdosa aRényiho [13] takmer kazdy graf ma nejaka vlastnost @, ak

pravdepodobnost’ mat’ tato vlastnost’ sa blizi k jednej s rasticim pocetom uzlov grafu.

Nie je ucelom tejto prace rozoberat vlastnosti ndhodnych grafov. Zaujemcov
odkazujem na d’al$iu literatiru [11, 13]. Pre nase potreby je dolezité vediet, Ze pre znacny
rozsah hodndt pravdepodobnosti p distribucia stupna uzlov ndhodného grafu ma tvar funkcie
s peakom (Poissonovo rozdelenie) (vid. obrazok 9). Znamend to, Ze v ndhodnych grafoch
mame mnoho uzlov majlacich stupen v Uzkom okoli maxima distribucnej funkcie
a pravdepodobnost’ mat’ uzol s vacSim alebo menSim stupfiom so vzdialenostou od tohto
typického stupna, definovaného maximom rozdelenia, rychlo klesa. Klasteriza¢ny koeficient

v ndhodnom grafe je



Crona ® % (2.5)

ak pocet uzlov N je vel’ky. V takom pripade priemerni vzdialenost’ mézeme vypocitat’ ako

()
rand "~ In <k> : (26)

V rovniciach (2.5) a (2.6) N je pocet uzlov a<k> je priemerny stupen uzla grafu. Z (2.5)

vidime, Ze pre velky pocet uzlov sa klasterizacny koeficient v ndhodnom grafe blizi k nule.
Dalej z rovnice (2.6) mozno usudit’, Ze separacia vrcholov rastie s po&tom vrcholov grafu len
pomaly, logaritmicky. Ndhodny graf je teda taky graf, v ktorom maji uzly k sebe pomerne
blizko.

Nie vSetky grafy vSak maji také isté vlastnosti ako ndhodné grafy. Ak graf vznika
procesom, ktory navrhli Watts a Newman [14], potom sa jeho klasterizacny koeficient
nebude s rasticim poctom uzlov blizit' k nule, aj ked’ priemernd vzdialenost’ medzi uzlami
bude rast’ s po¢tom uzlov logaritmicky, tak ako v ndhodnych grafoch. Takéto siete nazyvame
siet’ami malého sveta. Charakterizuje ich pomerne velky klasterizacny koeficient
kombinovany s malou separaciou uzlov. Aku maju siete malé¢ho sveta Struktaru ukazeme na

Newmanovom a Wattsovom modeli [1, 14] (obrdzok 5).

Predstavme si, Ze mame retiazku vrcholov, pozostavajiucu z velkého mnozstva vrcholov,
N >>1. Kazdy vrchol je hranami priamo spojeny so Styrmi najbliz§imi susedmi (obrazok 5a).
Konce retiazky spojime (vytvorime tak periodické hrani¢né podmienky). Potom postupne

kazdli z hrans istou pravdepodobnostou prepojime tak, ze odpojime jeden jej koniec




Obrizok 5. Struktura sieti malého sveta. a) Siet s pravidelnou Struktirou, kde klasterizany
) 1 ) , , , . . y & ,
koeficient C = E a priemerna vzdialenost’ rastie s rasticim po¢tom uzlov ako L oc N . b) Struktira

siete malého sveta. Vd’aka nahodnym kratkym spojeniam sa radikalne skracuje separacia uzlov

(L ln(N )) ale, ak kratkych spojeni je relativne malo, lokalna Struktura siete ostdva prakticky

neporusena (C = %).

a zapojime ho na ndhodne vybrany uzol (obrazok 5b). Ak je tato pravdepodobnost
presmerovania hrany vel'mi mald, pre kone¢ny pocet uzlov nemusime dostat’ Ziadne nahodné
kratke spojenie. Ak sa blizi kjednej, potom temer kazdd hrana v sieti je ndhodne
presmerovana a dostaneme nahodny graf. Niekde medzi tymito dvoma krajnostami sa vSak
nachadza oblast’ malého sveta, kde par ndhodnych kratkych spojeni zabezpe¢i mali separdciu
uzlov, ale nenarus$i prili§ pravidelnu sietovl Struktiru. Siete malého sveta tak stoja na

pomedzi medzi pravidelnymi, mriezkovymi grafmi a ndhodnymi grafmi [1, 14].

Ak ma siet takd distribuciu stupna uzlov ako na obrazku 4, potom vlastne do

vel'kej miery plati, ze
Plk)ock™ . (2.7)

Exponent y sa nazyva Skdlovacim exponentom distriblcie stupiia uzlov. Siet’ s distribuciou

stupnia uzlov typu (2.7) nazyvame bezSkdlovou, pretoze na rozdiel od ndhodnych grafov
(obrazok 9), v nej neexistuje ziadna vyznacna Skala, Ziaden typicky stupeii uzla. Jedina Skala

je dana konecnost'ou poctu uzlov a hran v sieti, teda velkost’'ou siete.

Redlne siete mavaju velmi cCasto bezSkalova Struktiru. Zaroven v nich, spolu
s bezskalovou Struktirou, ¢asto pozorujeme aj isté hiererchické usporiadanie uzlov. Ako sa
toto usporiadanie prejavuje na merate'nych vlastnostiach siete? O hierarchii v sietach budeme
podrobnejsie hovorit’ neskor. Studovali ju, okrem inych, aj autori Ravasz a Barabasi [15],
Vasquez [16] a Nather, MarkoSova a Rudolf [17]. Z tychto prac vyplyva, Ze hierarchické
usporiadanie uzlov sa odzrkadluje v mocninnej distribucii priemernych klasteriza¢nych

koeficientov uzlov majucich isty stupen k
Clk)oc k™° (2.8)

kde o je novy Skélovaci exponent.



Casto pozorovana kombindcia bezskalovosti a hierarchickej organizacie v realnych
sietach prirodzene vedie k otdzke, ¢i existuji jednoduché, v prirode pozorovatelné procesy,
ktoré by v konecnom dosledku viedli k takymto vlastnostiam. V d’alSich castiach ukazeme,

ze takéto procesy skutocne existuju.

3. Realne siete a ich vlastnosti

So sietami sa Clovek sucasnosti potyka cely zivot. Mame svoje siete socialnych
kontaktov, denne pouzivame internet, mobilnl a telefonnu siet’, premiestitujeme sa pomocou
siete ciest, zeleznic a leteckych trds a myslime pomocou neurdénovej siete nasho mozgu.
Mnohi z nas su napojeni na Facebook, popripade maju stranku na www sieti. Preto §tidium
sieti nie je samoucelné. Ako sa vlastnosti sieti menia s ¢asom, ako su siete odolné voci
porucham, ako dobre sa pomocou sieti Siria signaly, ako dynamika sieti ovplyviiuje ich
Struktlru, aké procesy v sietach vedu k tym ktorym ZiadlGcim, ¢i neziadicim vlastnostiam,
o tom vSetkom je uZito¢né mat’ predstavu skor, ako nejaku siet’ zatneme vytvarat. Okolo seba
vSak pozorujeme siete, ktoré¢ vytvorila sama priroda. Jedna z nich, neurénova siet’ mozgu,
pracuje v naSich hlavach. Ako si vlastne priroda poradila? Ako vytvorila siete optimalnych
vlastnosti? V tejto Casti preskimame niektoré zo sieti, ktoré vznikli viac menej samocinne,

bez predoslého planu, len procesom samoorganizacie.

3.1. Internet

V roku 1999 Faloutsos a jeho spolupracovnici merali vlastnosti internetove;j siete [18].
Vtom case bola velmi aktuadlna otdzka  optimalizdcie Struktury internetu tak, aby
komunikécia bola ¢o najefektivnejSia. Pokusy umelymi zasahmi optimalizovat’ internet neboli
prili§ Uspesné, pretoze sa mlicky predpokladalo, ze internet je vlastne ndhodnym grafom.
Faloutsos a jeho kolegovia prvi ukazali, Ze internet je bezSkalovou sietou typu (2.7) a Ze
vlastnosti internetovej siete sa tak vyrazne liSia od vlastnosti v tom case populdrnych
ndhodnych grafov. Neskor sa tiez zistilo, ze takato bezSkadlova Struktara dobre odolava
nahodnym porucham, ale je citlivd na cielené utoky smerované na uzly s velkym stupiiom
[33]. Objav Faloutsosovho timu jednak vysvetlil neuspechy, ale aj otvoril nové otazky. Tykali
sa hlavne procesov, ktorymi internet rastie a ich dosledku na jeho celkovu Strukturu. Viacej
svetla do tychto otdzok vniesla praca Yooka, Jeonga a Barabasiho [19].

Tito traja autori experimentalne Studovali procesy rastu internetovej siete. Internet je na

najnizSej urovni rozliSenia siet’ uzlov - rootrov spojenych linkami. Uzly st rozmiestnené na



dvojrozmernom povrchu zemegule tak, ze vytvaraji fraktalnu Struktaru (s fraktalnou

dimenziou D, =1.5), ktora silne koreluje s hustotou svetovej populdcie. Merania Yooka,

Jeonga a Barabasiho ukézali, Ze internet rastie inkrementdlne, a jeho Struktura je urcena

dvoma zakladnymi kompetitivnymi procesmi:

1. Pravdepodobnost’ linky medzi dvoma uzlami klesa linedrne s fyzickou vzdialenostou
medzi nimi.

2. Pravdepodobnost’, ze sa novy uzol pripoji k starému je priamo umerna stupniu tohto uzla
(preferencné pripdjanie).

Prvy proces je dany tym, ze novi uzivatelia internetu maju tendenciu pripojit’ sa k ¢o

najbliz§iemu uzlu, pretoze je to najjednoduchsie a aj najekonomickejSie. Druhy proces, ako

ukazeme v d’alSom, je zodpovedny za bezSkalova Struktiru internetovej siete. Teda

pravdepodobnost’, Ze sa novy uzol pripoji k starej sieti je dana takymto vzt'ahom

o

xlk, d,;,.)~k—f : 3.1)

kde k; je stupeni uzla j a d; je vzdialenost medzi uzlom iaj. @ a o si preddefinované

exponenty, ktoré riadia silu preferenéného pripajania a vplyv vzdialenosti. Merania ukazuja,

7ze pre internetovu siet’ plati o =1, a =1. Ak menime tieto exponenty, alebo menime

fraktdlnu dimenziu priestoru rozmiestnenia uzlov, potom je topologicka Struktira siete ina,
ako skuto¢na bezskalova Struktira internetu. Internet tak zaberd isté vynimoc¢né postavenie

Vv priestore parametrov (a, o, D, )

Vyskum internetu stale pokracuje a prinaSa nové zaujimavé vysledky. Okrem internetove;j
sieti na urovni rootrov sa intenzivne Studuje internetova siet’ na doménovej urovni . Niekol'ko
prac je venovanych aj www sieti, kde jednotlivé www stranky tvoria uzly a hrana medzi
uzlami existuje, ak na jednej stranke je hypertextovy odkaz na inua stranku [1, 33, 35]. Takejto

sieti sa budeme podrobnejSie venovat’ neskor.

3.2. Siete v biologii

Vyskumy v poslednej dobe potvrdzujt, ze aj biologické siete st Casto bezskaloveé, maju
vlastnost’ sieti malého sveta, popripade hierarchicky zoskupené uzly. Ako priklad moézu sluzit’
metabolické siete [20], siete proteinovych interakcii [6] , popripade siete potravinovych
retazcov [21]. Napriklad proteinové interakéné siete su vytvarané vo vnutri kazdej bunky.

Uzlami su jednotlivé proteiny a hrana existuje vtedy, ked” dva proteiny fyzicky interaguju.



V metabolickych sietach uzly (metabolity) st spojené hranou vtedy, ked” st bud’ substratmi
potrebnymi k nejakej metabolickej reakcii, alebo produktami tej istej metabolickej reakcie.

Hierarchicka organizacia uzlov sa Studovala najmi v metabolickych retazcoch. Hlavne
tieto siete su prikladom biologickych bezskalovych a hierarchicky organizovanych sieti,
ktorych $tatistické miery spliiaja zakony (2.7) a (2.8) [22, 23]. Navyse st aj sietami malého
sveta.

Noort, Snel a Huynen [24] Studovali siete génov na priklade Saccharomyces
cerevisiae. V tejto sieti gény su uzlami a hrana sa medzi nimi kladie vtedy, ak st dva gény
koregulované. Autori ukazali, ze takéto siete majui charakter siete malého sveta a su zaroven
bezskalové. Ci v danej sieti existuje nejaka hierarchia, autori neskumali.

V metabolickych, ale aj inych biologickych sietach vSak nejde len o ich topologické
vlastnosti, ale hlavne o to, aké maju tie ktoré¢ interakcie (hrany) vyznam. Model biologickej
siete musi teda pocitat’ s tym, Ze nie kazd4 hrana ma rovnaka vahu, ¢o celu situdciu velmi
komplikuje. Nie je to tak davno, ¢o sa Studuju aj modely sieti s vahovanymi hranami [25, 47].
Studuju sa v§ak najméi numerickymi metddami, pretoze analytické vypodty v takychto sietach

st omnoho komplikovanejsie, ako v jednoduchsich bindrnych siet’ach.

3.3. Funkéné siete mozgu

Funk¢nd siet’ mozgu je prikladom ad hoc siete. Inym prikladom ad hoc siete je aj
mobilna telefonna siet. V mobilnej telefonnej sieti st uzlami l'udia a hrana medzi nimi je
pritomna len vtedy, ked’ dvaja I'udia spolu prave telefonuji pomocou mobilného telefonu. Ad
hoc siet’, ako napriklad funkcna siet’ mozgu, alebo mobilna telefonna siet, sa tak v Case
neustdle meni a za stabilnl ju mozno povazovat’ len na kratku dobu. Funkénu siet’ mozgu
mozno skumat’ len vtedy, ked’ je mozog zaujaty plnenim nejakej kognitivnej lohy. Stadium
funkénych sieti mozgu umoznil aZ s pokrok neinvazivnych metéd zobrazovania mozgu in
vivo. Jednou z takych metod je v ivode spomenutd metdda funkénej magnetickej rezonancie
[5].

Funk¢na magnetickd rezonancia vyuziva zmeny pomerov okyslicenej a neokysli¢enej
krvi (BOLD meoda) a tiez fakt, Ze prietok krvi tymi oblastami mozgu, ktoré su pri plneni
danej kognitivnej Ulohy aktivované, je meratene zvySeny. ZvySenie je umerné intenzite
aktivity (metdda perfazie). Scanovanie mozgu pomocou funkénej magnetickej rezonancie
nam pomoze pochopit’ obrazok 6. Snimand osoba lezi v akomsi tuneli, v ktorom ma
k dispozicii mikrofon a slichadlad. Do sluchadiel dostdva pokyny od experimentatora, alebo

iné signaly nevyhnutné k tomu, aby vykondvala dopredu dohodnutt kognitivnu tlohu. Tou



ulohou moze byt’, napriklad, opakovanie slov v nezndmom jazyku, preklad viet, poCuvanie
hudby, alebo trebars aj nieco tplne jednoduché, ako rytmicky pohyb prstami jednej, ¢i druhe;j
ruky. Signal sa snima on line a pomocou vhodného softvéru sa premieta ako séria rezov
mozgom na monitor experimentatora sediaceho v druhej miestnosti.

Experimentator moze tak priamo sledovat’ ktoré Casti mozgu pocas danej kognitivnej
ulohy pracuju intenzivne, ktoré menej a ktoré vobec nie. VSetky vrstvy mozgu sa oscanuju v
priebehu zhruba dvoch sektind. Data sa uchovavaji a potom réznym sposobom spractivaju.
Pri predspracovani sa odstrania irelevantné signaly (napr. tie, ktoré produkuje biela hmota

mozgova) a ¢asovo sa zosynchronizuju tak, aby sme signaly zo vSetkych vrstiev mohli

A 4

Hrubka vrstvy:

6mm
RozliSenie

1 3mm

Velkost matice
voxelov, 64 x 64.

Rozmery jedného
voxelu: 3 x3 x 6
mm

Obrazok 6. Schéma usporiadania pri funkénej magnetickej rezonancii. Mozog sa scanuje po
vrstvach, ktoré maji hrubku niekol’ko milimetrov. V kazdej vrstve sa snima fmri signal s rozliSenim 3
mm. RozliSenie predstavuje velkost’ jedného voxelu, jeho rozmery mézu byt’, napriklad, 3 x 3 x 6 mm,

ak vzdialenost’ medzi snimanymi vrstvami je prave 6 milimetrov.

povazovat’ za zosnimané v tom istom Casovom okamihu. Predspracované data sa potom
uchovavajli vo forme trojrozmernej matice voxelovych signdlov a neskor pouZzivaju na

rieSenie roznych vyskumnych tloh a otédzok.



Jednym zo sposobov spracovania fmri dat je aj vytvaranie funkénych sieti mozgu. Prvi
sa o to pokusil tym Danteho Chialva zo Spanielska a USA [3, 26]. Predpokladali, Ze Tudsky
mozog je v podstate nelinearny dynamicky systém, ktory pracuje na hranici kritického stavu.
Fyzikom je znadme, Ze kritické stavy v nelinearnych dynamickych systémoch su doprevadzané
sériou mocninnych zdkonov podobnych rovniciam (2.7) a (2.8) [12]. Mocninné zakony
znamenaju, ze v systéme su pritomné d’alekodosahové korelacie ato aj napriek tomu, ze
interakcie medzi elementami dynamického systému st len kratkodosahové. Ako priklad moze
sluzit’ kopa piesku [27]. Ak prikladame vel'mi pomaly jednotlivé zrnké na kopu piesku, ktora
ma maly sklon, vdc¢Sinou sa ni¢ nedeje. Nanajvys sa spusti mala lavinka, ktora hned” zanika.
Ak vsak kopa rastie, pri istom kritickom sklone prilozenie jediného zrnka piesku moze spustit’
lavinu, ktorej velkost' je porovnatelnd s velkostou celej kopy. Velkost laviny mézeme
napriklad merat’ poctom zrniecok, ktoré sa pocas trvania laviny pohli. Ked urobime
distribuciu velkosti lavin, teda na os x vynesieme velkost’ laviny a na os y pocet lavin danej
vel'kosti, dostaneme v logaritmickej Skale obrazok podobny obrazku 4. Teda normovany
pocet lavin zavisi od velkosti podla mocninného vztahu (2.7), kde £ teraz nepredstavuje
stupeni uzla, ale velkost’ laviny a P(k) normovany pocet lavin velkosti £..

Pohl'ad na mozog ako na dynamicky systém je pohl'adom zhora nadol. Vlastnosti
mozgu, o ktorych experimentatori uz davno vedia, by sa mali objavit’ ako dosledok kritického
spravania sa nelinedrneho dynamického systému. Napriklad by bolo zaujimavé sledovat’,
preco neurdny pri plneni kognitivnych tloh pracuji synchronizovane a ako sa z jednotlivych
elektrickych impulzov vytvara vedoma mysel. Vytvaranie vedomej mysle sa dd porovnat
s fenoménom kultury, ktord sa vynori ako dosledok individualnych intelektudlnych pocinov.

Ak je mozog skutocne nelinearny dynamicky systém pracujuci v kritickom stave, mali
by sme pozorovat’ takéto javy:

1. Na véacsich skalach by sme mali pozorovat’ d’alekodosahové korelacie v €ase 1 priestore.

2. Na malych Skalach by sme mali pozorovat’ lavinovita ¢innost’.

3. Adaptivne procesy v mozgu by mali mat’ lavinovity charakter, mali by teda trvat’ vel'mi
kratko.

Lokélne laviny neuronalnej aktivity ako prvi pozorovali Beggs a Plenz [29]. Co sa
d’alekodosahovych korelacii tyka, tie sa vyjavuji prave vo funkénych sietach mozgu.
Z nameranych fmri dat ich moézeme vytvorit’ takto: Pod uzlami potencialnej funkénej siete
budeme rozumiet’ jednotlivé voxely. Hranu medzi dvoma voxelmi polozime vtedy, ked su
Casové signdly medzi nimi skorelované. Mieru korelacie medzi voxelom i aj urcuje linearny

korelacny koeficient r(i,j)



(3.2)

kde o’ (S(t)) = <S2(t)> - <S(t)>2, S(t) je aktivita voxelu v Case ¢ (merand v nejakych jednotkach) a
<> predstavuje Casové priemerovanie. Hrana medzi dvoma voxelmi i aj vznikne vtedy, ked’
korela¢ny koeficient r(i, j) prekroci istu preddefinovanu prahovi hodnotu 7. VéacSinou sa
prahovy koeficient , voli vrozmedzi hodnét 0.6 az 0.8. Cim mensi prahovy koeficient
pouzijeme, tym viacej uzlov siet ma, ale zéaroveil tym viacej ndhodnych korelacii
zachytavame. Cim je koeficient r, vySsi, tym lepSie st aktivity voxelov skorelované, ale nasa

siet’ moze mat’ prili§ malo uzlov na to, aby sme mohli merat’ jej vlastnosti.

Ked’ Chialvov tym zmeral distribuciu stupna uzlov funkénej siete vzniknutej pocas
plnenia jednoduchej kognitivnej ulohy, zistil, Ze sa sprava podl'a rovnice (2.7). Siet’ ktord sa
vytvorila mé tak charakter bezskalovej siete. Posuvanim prahovej hodnoty korelaéného
koeficientu mézeme pozorovat’ ako sa charakter distribucie meni.

Praca Chialvu ajeho kolegov tak ukdzala, Ze v mozgu existuji dalekodosahové
korelacie medzi voxelmi [3, 26]. Tedria nelinearnych dynamickych systémov hovori [12], ze
také korelacie mézu naznacCovat’, ze systém pracuje na hranici poriadku a chaosu. BlizSie
o funkénych sietach mozgu pojedndm v kapitole o aplikécidch teorie sieti, ked’ popiSem nase
vlastné spracovanie dat a funk¢né siete vznikajuce pri rytmickom pohybe prstov.

Na zaver uZ len kratka poznamka. Je vel'mi zaujimavé sledovat’ fmri merania mozgu
z miestnosti experimentatora. Ja som sa ich zacastnila pocas Studijného pobytu na
Univerzitnej klinike v Tubingene na jar roku 2009. Merany Student mal za Glohu rytmicky
zatinat a uvolilovat’ pést, najprv niekol’ko minat pravii apotom lavu, podla pokynov
experimentatora. Na monitore sme sledovali ako sa aktivita mozgovych oblasti prestiva
z lavej pologule na pravi. Ked sme sa naucili, ktoré €asti mozgu sii zamestnané v pripade
ked pracuje prava past’ a ktoré ked pracuje l'ava, poziadal experimentator Studenta, aby
prestal skutoCne zatinat’ paste a len si predstavoval, ktort pést’ prave zviera. NaSou ulohou
bolo ¢itat’ jeho mysel' a z meranych signalov uhddnut,, ¢i prave mysli na pravu, alebo l'ava
ruku. Skuseni experimentatori hadali so sto percentnou istotou, my ostatni sme uhadli tak 70
percent pripadov. Ak niekedy budete mat taki moZnost, vel'mi odpori¢am zucastnit’ sa

podobného experimentu.



3.4 Socialne siete

Struktura socialnych sieti sa stala predmetom vyskumu uZ v Sestdesiatych rokoch
minulého storoc¢ia. Popularnym sa stal, napriklad, Milgramov experiment [2], ktory vyustil
v sformulovanie znameho zékona Sest’stupfiovej separacie v socialnej sieti.

Milgram Studoval StruktGru socidlnej siete a preto si vymyslel takyto experiment.
Rozoslal sériu listov na nahodne vybrané adresy po celych Spojenych Statoch. Adresatov
poprosil, aby odpoved poslali na adresu zndmeho brookera v Bostone, ale nie priamo. Mali
vyuzit’ siet’ svojich socidlnych kontaktov a poslat’ list tomu, s kym sa dobre poznaju a o kom
predpokladaju, ze by mohol poznat’ niekoho, kto pozna niekoho.....kto pozna onoho brookera.
Cielom experimentu bolo urcit, kolkymi rukami list v priemere prejde, kym sa dostane
k adresatovi. Milgram zistil, ze ¢lovek potrebuje okolo Sest’ sprostretkovatel'ov k tomu, aby sa
dostal k inému, Gplne nezndmemu ¢loveku. Tento zdkon Sest’stupiiovej separacie v podstate
potvrdzuje, Ze socidlne siete maju vlastnosti sieti malého sveta. Dokonca aj samotny pojem
siet' malého sveta zaviedol Milgram.

Preco je tomu tak? Skiisme uvazovat. Vasa, aj moja socidlna siet’ ma, dalo by sa
povedat, istd Struktiru. Vytvarame si skupiny priatelov, napriklad na béaze spolo¢nych
zdujmov, popripade na pracovnom zaklade. LCudia v ramci jednej skupiny sa zvycajne
nepoznaju len s vami, ale aj navzdjom. Priemerny klasterizany koeficient v socialnej sieti
moze byt preto dost’ vysoky. Zaroven vSak v nasej socialnej sieti existuju aj kratke spojenia.
Vzniknt napriklad tak, Ze na§ priatel’ sa odst'ahuje nieckam d’aleko a v pripade potreby ndm
tak umozni kontakt s 'ud’'mi, ku ktorym by sme sa inak vobec nedostali.

Separacia dvoch o0sob v sieti profesiondlnych kontaktov (kde napriklad v hereckej sieti
herec je uzol a vSetci herci, ktori s nim hrali v niektorom filme, st s nim spojeni hranami.
Alebo napriklad vedec je uzol a vSetci ti, o s nim napisali ¢lanok st s nim spojeni hranami) je
eSte menSia [1]. NeskorSie Stadie ukézali [30, 31, 32], Ze socidlne siete majui aj vlastnosti
bezskalovej siete, lebo sa v nich uplatiiuje prefernéné pripdjanie uzlov. Znamena to, ze
clovek, ktory je zndmy a méa vela kontaktov, ma vicSiu pravdepodobnost’ ziskat’ d’alSie
kontakty, ako ten, o ich nema. Aj slavny herec bude skor angazovany do nejakého nového
filmu ako zaciatocnik, znamy vedec ma v&cSiu nddej napisat’ pracu s inym vedcom, ako
niekto Uplne neznamy.

V roku 2001 sa v Nature objavil zaujimavy ¢lanok, ktory skimal Struktaru iného typu
socidlnej siete, siete sexudlnych kontaktov [32]. Autori analyzovali data zozbierané vo
Svédskom socialnom vyskume. Dotaznik skiimal sexudlne spravanie 2810 ndhodne vybranych

0s0b vo veku od 17 do 74 rokov. Pretoze siet’ sexudlnych kontaktov nie je stabilna a s ¢asom



sa meni, autori sa najprv pytali na pocet partnerov za poslednych 12 mesiacov. Predpokladali,
ze zmeny pocas takej kratkej doby je mozné zanedbat'. V sieti sexualnych kontaktov, je
jedinec uzlom apocet kontaktov predstavuje stupen uzla k. Dobrou matematickou
reprezentaciou siete sexualnych kontaktov je bipartitny graf. V tomto grafe patria muzi do
jednej particie a zeny do druhej. Od pripadov, kde tomu tak nie je, m6zeme odhliadnut’.
Distribucia stupiia uzlov pre Zeny aj muZov je velmi podobna. V podstate spiiia zakon
(2.7), so $kalovacimi exponentami y = 2.54 pre muzov a y =2.31pre Zeny. Dal§ia otazka sa
tykala poctu partnerov, ktorych respondenti vystriedali pocas celého doterajSieho zivota.
Distribacia stupna uzlov v takejto sieti je podobna ako v prvom pripade, len s trochu inou

hodnotou Skalovacich exponentov ( = 2.1 pre muzov a y =1.6 pre Zeny). Siet’ sexualnych

kontaktov, podobne ako iné socidlne siete ma tak bezSkadlovy charakter. Pretoze je aj

socialnou sietou, dé sa predpokladat’, ze bude mat’ aj vlastnosti sieti malého sveta.

3.5 Zhrnutie

Na priklade niekol'kych vel'mi réznych redlnych sieti sme si mohli v§imnut’, ze castokrat
maji podobnu Strukturu. Charakterizuje ju bezSkalovost’, popripade hierarchia v usporiadani
uzlov a tiez to, ze s sietami malého sveta. Hierarchia v sietach sa vSak skiima len par rokov,
preto starSie prace sa touto otdzkou nezaoberaju. Fakt, ze redlne siete maju podobné
vlastnosti, vedie k opravnenym uvahdm o tom, ze musi existovat’ jednoduchy a v prirode
pozorovany spOsob rastu sieti, ktorého vysledkom s pozorované vlastnosti realnych sieti.

V dalSich castiach tejto prace ukazeme o aké procesy ide.

4. Modely rastucich sieti

Ak chceme porozumiet’ tomu, ako suvisi dynamika sieti sich Struktirou, méZeme
Studovat’ vhodné modely. V tejto Casti predstavim zakladné modely rastucich sieti. Potom sa
pokusim o niekol'’ko modifikécii tychto zakladnych modelov, na ktorych ukédZem, Ze finalna
Struktura siete je citlivo zavisla na detailoch lokalnej dynamiky [9, 10, 33].

Aby sme ziskali isty vhl'ad do dynamiky modelov, je vhodné ich najprv simulovat’ na
pocitaci. Skor ako by sme sa snazili vyrieSit' rovnice, ziskame takto isty odhad ako sa
Struktara siete meni v dosledku dynamiky. Mézeme napriklad zmerat’ to, ¢o sa zmerat’ da,
teda charakteristiky, ktoré so Struktirou siete suvisia. MOZeme zmerat’ distribiciu stupia
uzlov, priemerny stupeni, distribuciu priemernych klasterizaénych koeficientov uzlov

majucich isty stupei, popripade iné charakteristiky nasimulovanej siete.



Rastuce siete moZzeme na pocita¢i modelovat’ takto:

1. Na zaciatku mame par uzlov pospéjanych niekol’kymi hranami. Simulédciu moézeme
napriklad Startovat’ z malého kompletného grafu. Na tom v podstate prili§ nezalezi,
lebo vlastnosti vel'kej siete pocCiatocny graf vobec neovplyvni..

2. Nech kazdu casovu jednotku odkial'si z vesmiru prileti jeden uzol a pripoji sa m
hranami k starym uzlom. Uzol mdézeme identifikovat’ pomocou ¢asu s, v ktorom sa
objavil. Uzol, ktory priSiel do siete v ¢ase 1 md index s =1, ten, €o priSiel v ¢ase 2 ma
s =2 apodobne. To, akym spésobom pripdjanie uzlov prebieha, je vel’'mi doleZité
z hladiska celkovej Struktury siete.

3. Priddme dalSie lokalne procesy, ktoré sa deju v tom istom casovom okamihu ako
pripajanie nového uzla.

4. Opakujeme od bodu 2. Siet, ktorej findlnu Strukturu skimame, musi byt dostato¢ne
vel’ka, ¢im dlhSie simulacia bezi, tym presnejSie zmeriame charakteristiky siete.

R6zne modely sieti sa liSia v implementécii bodu 2. a 3. K bodu 2. treba povedat’, ze su dva
zakladné spdsoby pripajanie uzlov k sieti: ndhodné pripéjanie a preferencné pripajanie [9, 10,
33]. Pri ndhodnom pripéajani pravdepodobnost’, Ze sa novy uzol pripoji jednym koncom hrany

k nejakému starému uzlu je rovnaka pre vSetky staré uzly, teda
T, =—, 4.1)

kde N(l) je pocet uzlov vsieti vcase t. Ak sa uzol pripoji do siete preferencne,

pravdepodobnost’ pripojenia jednym koncom hrany k nejakému starému uzlu s je imerna

stupniu tohto uzla, teda

=t (4.2)

V rovnici (4.2) k, je stupen uzla i. Proces rastu siete s obidvoma spésobmi pripdjania uzlov
mozno opisat aj matematicky. Ak pouzijeme prvy spdsob pripdjania, dostaneme model
s nahodnym pripajanim, ak pouzijeme druhy spdsob, ziskame Barabasi — Albert model (BA

model) s preferenénym pripajanim uzlov [9, 10].

4.1. Model s nAhodnym pripajanim uzlov.
Predstavme si rasticu siet’ s ndhodnym pripajanim uzlov [10, 33]. Spustme na pocitaci
vysSie opisany proces pre najjednoduchsi pripad m=1/ a urobme napriklad desat” simulacii

rasticej siete. Ked sa pozerame na jeden konkrétny uzol s, v Case ¢ bude mat v prvej



simuldcii isty stupeni k.. V druhej simuldcii bude mat v &ase ¢ vo vieobecnosti stupefi

k? # k.. Podobne je tomu aj v dalich simulaciach. Stupeti konkrétneho uzla je tak ndhodnou

premennou. Preto ak chceme vediet, ako sa stupen uzla s meni s Casom, moézeme skiimat’ len
priemerny stupen uzla s a jeho asova zavislost'.
MozZeme sa preto najprv opytat, aka je pravdepodobnost p(k,s,t) , Ze uzol, ktory

prisiel do siete v Case s bude mat’ v Case ¢ nejaky stupen £:

plk,s,t)= %p(k ~Ls,t—1)+ (1 —ﬁt)jp(k,s,z -1). (4.3)

Prvy ¢len na pravej strane rovnice (4.3) znamend, ze k uzlu s so stupiiom -/ (ktory mal

v ¢ase t-1) sa v Case t pripojila jedna hrana a stupen tohoto uzla sa zvysil na k. Hrana sa

pripojila s pravdepodobnostou (4.1). Druhy ¢len v rovnici (4.3) hovori, ze uzol s uz

1
N(0)
v Case 7-1 mal stupen & a ni¢ sa nestalo.

Ako vyriesit rovnicu (4.3)? V prvom rade musime vediet’ pocet uzlov siete v danom
case. Ked’ze simuléciu Startujeme z malého pociatocného grafu, ktory v kone¢nom doésledku

velmi nezavéazi, a ked’ze kazdi asovi jednotku prichddza do siete jeden uzol, N(t)~t.

Potom rovnicu (4.3) mozno prepisat’ takto:
p(k,S,t): %p(k —l,S,t _1)+(1_%jp(kasat _1) (44)

Ked’ tiito rovnicu vynasobime ¢asom ¢, upravime a prejdeme k spojitej limite (Co pre vel'ké
siete mézeme urobit’) [10, 33], diferencna rovnica (4.4) sa zmeni na diferencidlnu

Joplh,s,t) __aplk,s,t) 4.5)

ot ok

Ak (4.5) vynasobime veli¢inou k a preintegrujeme cez k v medziach od 0 do o« dostaneme

s vyuzitim vztahu k(s,t):_[k plk,s,t)dk koneéne rovnicu pre priemerny stupeii uzla s,
0

v Case t, k(s,t):

Ok(s,1) 1
.

e (4.6)

RieSenim tejto rovnice je

t

k(s,t)=1- h{fj , (4.7)



kde sme vyuzili hranicnt podmienku k(s,s)=1, teda, Ze uzol, ktory prisiel do siete v Case s ma
v dobe svojho zrodu stupenl jedna (jednou hranou sa pripojil k starym uzlom). Vieme teda,
ako sa priemerny stupeii uzla s meni s casom. To, o nas vSak zaujima eSte viac je Struktura
siete, teda to kol'’ko akych uzlov v sieti je a ako su poprepajané. Aka je, napriklad, distribticia
stupnia uzlov? D4 sa to analyticky vypocitat’? Dobrou spravou je, ze da [10, 33]. Potrebujeme
v podstate spocitat’ kol'ko uzlov daného stupna sa v takto skonstruovanej sieti nachadza
a prenormovat’ poctom vsetkych uzlov:

Plk,t)= % ! ds S(k —k(s,1)) = _[t%ls@ . (4.8)

V tejto rovnici N(¢)=t je pocet uzlov v sieti a delta funkcia sa rovna jednej ak k=k(s,z). Ak
integrujeme cez vsetky uzly s, spocitame tak vlastne pocet tych uzlov, ktoré maji prave
stupen k. Prava stranu rovnice (4.8) ziskame vyuzitim vlastnosti delta funkcie [10, 33, 36].
S pouzitim rovnic (4.7) a (4.8) dostaneme pre velké Casy distribiciu stupiia uzlov siete

rastiicej pomocou procesu ndhodného pripdjania novych uzlov
P(k)oc e, (4.9)
kde a = ln(2)>— 0. Vidime, ze v takejto sieti je vela uzlov s malym stupnom. Pocet uzlov

s VaCsim stupniom exponencialne rychlo klesa k nule.
Model siete s ndhodnym prepdjanim uzlov je dobry vtedy, ak dokaze vysvetlit’

Struktiru sieti, ktoré rasti podobnymi procesmi. Neskor spomeniem nejaké priklady.

4. 2. Barabasi — Albert model.

Skiisme sa teraz pozriet’ podrobnejSie na iny model, v ktorom sa uzly pripajaja do
siete preferenénym sposobom [9, 10, 33]. Opidt’ zvolime najjednoduchsi pripad, ked kazdy
novoprisly uzol sa do siete pripoji jednou hranou (m=1). Uprava rovnic pre pripad m > 1 je
vel'mi jednoduchd apre citatela bude uZitoénym cvicenim. Pravdepodobnost pripojenia
konca hrany k uzlu je pri preferenénom pripdjani dana rovnicou (4.2). Takyto model rastucej
siete bol prvykrat analyzovany roku 1999 dvoma autormi a nesie aj ich meno: Barabdsi —
Albert model (BA model) [9]. Barabdasi a Albert, inSpirovani castym vyskytom bezskalovej
Struktiry v redlnych sietach, vznikajicich samoorganizovanymi procesmi, hl'adali
jednoduchu a v prirode pozorovatelnu dynamiku, ktora by prirodzene viedla k vzniku takejto
Struktary. V préci [9] dokdzali, ze preferencné pripdjanie uzlov je takou dynamikou.

Ak proces simulujeme na pocitaci a pozorujeme aky stupent ma v ¢ase ¢ isty uzol s,

zistime, Ze stupen uzla sje, podobne ako v pripade ndhodného pripajania novych hran,



nahodnou premennou. Preto mdzeme nieCo povedat’ len otom, ako sa s casom meni
priemerny stupein uzla s, k(s,z). Podobne ako v predoslom modeli sa pytame, aka je

pravdepodobnost’, Ze uzol s ma v ¢ase ¢+ stupen k:

p(k,s,t+1):gp(k—l,s,t)+ 1—,L plk,s,t) (4.10)

>k >k
i-1 i=l

Cleny na pravej strane rovnice (4.10) maji podobny vyznam ako v pripade ndhodného
pripajania uzlov, az na to, Ze pravdepodobnost’ pripojenia je Umerna stupiiu uzlov
a normovacia konstanta je preto suc¢tom vSetkych stupiiov uzlov (4.2). Podl'a rovnice (2.1) je
tento sucet rovny dvojnasobku poctu hran v sieti. Ked’ze kazda ¢asovt jednotku prichadza do

siete jedna nova hrana, pre vel'ké ¢ je poCet hran v systéme e(t): 2t . Ak, samozrejme,

odhliadne -
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Obrazok 7. Vizualizacia siete vytvorenej preferenénym pripajanim uzlov, kde m =2 je pocet hran
prinesenych novym uzlom. Z obrazku vidiet’, Ze siet’ pozostava z uzlov réznych stupnov. Dva uzly
s vel'kym poctom susedov (huby) su vyznacené trhanou ¢iarou. Najviacej uzlov je vSak takych, ktoré

maju maly stupeni. Simulované pomocou Network Workbench Tool [34].

!
me od tych par hran v pociatonom malom grafe. Teda mo6Zeme polozit’ Zki =2t. Ak to
i-1

dosadime do (4.10), dostaneme



p(k,s,t+1)=kz—_tlp(k—1,s,t)+[1—2%jp(k,s,t) (4.11)

Ked rovnicu (4.11) prenasobime 2¢, upravime a prejdeme k spojitej limite, dostaneme

diferencialnu rovnicu

5, Oplk,s.1) | okplk,s,t) _ (4.12)
ot Ok

a po prenasobeni (4.12) faktorom k a integraciou oboch stran rovnice cez dk v medziach od 0
po oo dostaneme rovnicu pre priemerny stupen uzla s, k(s,?)

ok(s,t)  k(s,t)

% (4.13)
Riesenim (4.13) je
B
k(s,t)oc[ﬁj =t (4.14)
s 2
a ak pouzijeme vztah pre vypocet distribucie stupna uzlov (4.8), dostaneme
Plk)ock™, y=3 (4.15)
D4 sa ukazat’, ze pre bezskalové siete plati [10, 33]
1
y=1+ E (4.16)

ateda exponent y mozno ziskat' aj bez pocitania distribucie (4.8). Ako moZno najst

vz4djomnu zavislost' exponentov v bezskalovych sietach? Z rovnice (4.14) vieme, ze ak
. y , _ . , . ,_, Os 1
zafixujeme ¢as, potom plati & oc s”. Rovnica (4.8) zasa hovori, ze k7 oc i k7

Porovnanim lavej a pravej strany tejto rovnice a s pouZzitim vztahu (4.15) dostaneme (4.16).
To, ¢o sme prave matematicky dokézali (4.8, 4.14, 4.15), nie je ni¢ in€, ako dokazané
tvrdenie, Ze preferencné pripajanie uzlov je ten mechanizmus, ktory vytvara bezskalovy typ
siete. NavySe preferencné pripajanie novych uzlov ksieti nie je nezname ani v realite.
Predstavme si, napriklad, socidlnu siet. Uz sme spomenuli, Ze ¢lovek (uzol), ktory je znamy
a popularny (ma vela kontaktov a teda vysoky stupen), ma omnoho vicsiu Sancu ziskat’ nové
kontakty a d’alSie priatel’stva, ako ten, ktorého nikto nepozna. Aj v citacnej sieti ten ¢lanok
(uzol), ktory prinaSa nejaky vyznamny objav, md omnoho vicsiu Sancu byt’ citovany v inych
pracach [35]. Podobne je tomu aj v inych redlnych sietach, spominali sme, napriklad, siet’
profesionalnych kontaktov [30, 31]. Ale je to tak aj vo www sieti [33, 37, 38], v ktorej uzly su

predstavované www strankami a hrany hypertextovymi odkazmi. Stranka vyznamne;j



osobnosti, alebo institicie ma urcite vacsiu pravdepodobnost’, ze sa na nu budi odkazovat’
z inych stranok, ako uplne nezndma www stranka.

Pravdepodobne som vas presvedCila, ze preferencné pripdjanie uzlov moéze byt
dovodom  bezskalovej Struktary realnych sieti. Preto je BA model zakladnym modelom,
ktory pomaha porozumiet ich Strukture a vystihuje zakladné kvalitativne ba dokonca aj
kvantitativne vlastnosti mnohych realnych sieti. Kvantitativne preto, lebo merania v redlnych

sietach ukazuja, ze Skdlovacie exponenty y (4.15) st v nich obycajne v rozmedzi hodnot

2.5-3.0 [10, 33]. Uvidime neskdr, Zze zmena Skélovacicho exponentu je spdsobena

dodatocnymi dynamickymi procesmi v sieti.
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Obrazok 8. Distribucia stupiia uzlov pre BA model . Siet ma N=30000 uzlov, m=2. N(k) predstavuje
pocet uzlov stupila k. Obrazok je v logaritmickej Skale a linedrna zavislost’ potvrdzuje rovnicu (4.15).

Exponent y mozno zmerat’ ako tangens smerového uhla priamky.

Mocninnd distribucia stupiia uzlov (obrazok 8) naznacuje, ze v sieti sa vyskytuji uzly
vSetkych stupniov. Jedinym ohrani¢enim stupna je pocet hran v sieti. Siet’ ma zaujimavu, sebe
podobnt Struktaru, ktord sa velmi Casto vyskytuje aj v redlnych sietach (obrazok 7). Niet
v nej ziaden vyznacny, typicky uzol s typickym stupiom. Prave preto sa takato siet’ nazyva

bezskalovou.



V BA modeli, ako sme videli vysSie, pravdepodobnost’ pripojenia novej hrany
k starému uzlu je imerna stuptiu tohto uzlu. To vedie k mocninnej distribucii stupfia uzlov so

Skalovacim exponentom y =3 (4.15). Skiisme BA model mierne pozmenit’ [10]. Predstavme

si, Zze 7, (4.2) je tmern¢ k+4, kde 4 je nejaka konStanta. Potom rovnicu (4.13) mozno

modifikovat’ takto

Ok(s.t) _ — kls,)+d (4.17)
o (k(s,0)+ A)ds

o t—~

V rovnici (4.17) m je pocet koncov hran, ktorymi sa novy uzol pripoji k starym uzlom.
Normovaciu konStantu, predstavovanu integralom v menovateli, vypocitame  takto:

Zintegrujeme obe strany rovnice (4.17) podl'a ds a dostaneme
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Obrazok 9. Distriblcia stupiia uzlov pre ndhodny graf (Eordos, Rényi model A), pravdepodobnost’
hrany medzi dvoma uzlami je 0.1, pocet uzlov N=10000. N(k) predstavuje pocCet uzlov majucich

stupeni k. Simulované s pomocou Network Workbench Tool [34].

jak(s” Vs = m (4.18)



Ok(s,t)

5 ds=n+m, kde k(z,t)=n je hraniéna

S pouzitim vzt'ahu —J.k s, t ds— t t +I
0

podmienka, dostaneme Jk(s,t)ds =(n+m)t a teda:
0

j(k(s,t)+A)ds:(n+m+A)t (4.19)

0
Rovnica (4.17) tak bude
Ok(s,t) . k(s,t)+ A4

or (n+m+A)t’ (4.20)
¢o je diferencidlna rovnica, ktord ma rieSenie
k(s, ) oc (5jﬁ, p=—"_ @.21)
K m+n+ A
Odtial’ dostaneme, ze y =1+ 1 —24” ;A . Ak A=0 an=m, dostdvame y exponent BA

modelu. KonStanta n > 0, pretoze uzol v ¢ase svojho prichodu do siete sa k starému uzlu

vzdy pripoji aspont jednou hranou. Ak aj n+ A4 > 0, hodnoty exponentov y sl v intervale
(2,00). Konstanta A tak nemeni charakter distribiicie stupiiov uzlov, meni viak velkost

Skalovacieho exponentu. Exponent zavisi od dodatocnej atraktivity (fitness) uzla.

4.3 Siete so zmieSanym preferenénym a nahodnym pripajanim.
Predstavme si teraz model rastucej siete, v ktorom sa mieSa preferenéné a ndhodné
pripajanie novych hran k starym uzlom [10]. Pocet novych hran, ktory pribudne kazda ¢asova

jednotku do siete nech je n,+m, anech sa m koncov novych hradn pripoji kuzlu s
preferencnym sposobom a n, koncov novych hran ndhodne. Druhé konce hran st pripojené

k novému uzlu. Potom rovnicu (4.17) mozno modifikovat takto

k(s,z) L k(s,t)+ 4

r

ot t p '
J. st+AdS

0

(4.22)

V tejto rovnici prvy €len na pravej strane predstavuje pravdepodobnost’ pripojenia n, koncov

hran ndhodnym spoésobom a druhy pravdepodobnost pripojenia m koncov hrén preferenénym

sposobom. Priemerny stupeil uzla s sa moze menit vdaka obidvom spdsobom pripojenia



novych hran. Nech opét k(0,0) =0 a k(t,t) =n. Podobnym sposobom aky bol pouzity pre
modifikaciu BA modelu, mézeme vypocitat’ integral v rovnici (4.22) a dostaneme

(k(s,t)+A+n’”(n,, +m+n+A)j

Ok(s.t) _ LI " . (4.23)

ot _nr+m+n+A t

Riesenie rovnice (4.23) vedia na

k(s’ t) o (ij (n,+m+n+4) (424)
s
a vezmuc do tvahy vztah (4.16) exponet y pre distriblciu stupna uzlov bude
A
y=24 TS (4.25)
m

Podl’a rovnice (4.25) vidime, ze bezskalova siet’ méze vzniknut’ aj tak, ze ¢ast’ novych hran sa
do siete pripoji ndhodnym spdsobom. Jeding, ¢o sa zmeni je Skéalovaci exponent y .

Ak sa rozhodnete docitat’ tento text az po Cast 6, dozviete sa aj o d’alSich typoch
analyticky rieSitelnych sietovych modelov. Predstavim v nej niektoré nase vysledky v tejto
oblasti. Zavediem d’alSie procesy, napriklad presmerovanie starych hran, vznik novych hran
medzi starymi uzlami a ukdzem, ako tieto dodato¢né efekty ovplyviiuju celkova Struktiru
siete. Uvidite tiez, Zze modely rasticich sieti nie si samoufelnou matematickou

ekvilibristikou, ale hlavne nastrojom, ktory dokéaze vysvetlit to, ¢o sa deje v redlnych siet’ach.

4.4 Siete so zrychlenym rastom.

V zékladnom BA modeli, ktory sme rozobrali v Casti 4.2, pocet hran v systéme je
linearnou funkciou casu, lebo do siete kazdu casovu jednotku pribudne novy uzol, ktory
prinesie konsStantny pocet novych hran. Takyto linearny rast nemeni priemerny stupen uzlov
v sieti. V danej verzii BA modelu suma vSetkych stupiiov uzlov je 2¢, pripadne 2mt (2.1), ak

m >1 je pocet hran, ktoré prinesie do siete kazdy novy uzol. Pocet uzlov v sieti v Case ¢ je

. : 2t
N()= t. Odtial mozno vypocitat, ze priemerny stupen uzla <k>:7:2 pripadne

2 ) ) .. .
k)= “mt_ 2m . Ukazuje sa vSak, ze takyto linearny rast nie je v realnych sietach uplne
; i yt y J y p

typicky. Merania dokazuji, ze napriklad vo www sieti, v internetovej sieti (na urovni
domén), ako aj v sieti profesionalnych kontaktov priemerny stupen uzla s casom pomaly, ale

iste rastie [39].



Pre BA model distribucia stupiia uzlov je urenda Skalovacim exponentom y =3.

V predoslych castiach sme ukdzali, ze toto nie je jedind moznd hodnota Skalovacieho
exponentu pre linedrne rastice siete. Ak chceme odhadnit’ dolnu hranicu intervalu
Skalovacich exponentov, mézeme napriklad vyuzit’ aj fakt, Ze v takychto siet'ach je priemerny

stupefi uzla kone¢ny. Musi teda platit, ze (k)= j kP(k)dk <. Ak P(k)oc k™ potom

1

o0

<k>: j k7" dk <o ateda, ako uz bolo inym sposobom ukazané, y>2. Skalovaci
1

exponent y,, pre BA model tato nerovnost’ spiia.
Ked’ meriame distribticiu P(k) v redlnych bezskalovych sietach, zistime, ze mocninne

sa sprava len v istych medziach, ktoré st tvoren¢ dvoma hranicami k;, a k . Prva hranica

znamena, Ze uzol s niz§im stupiiom sa v danej sieti nenachadza. Druhé hranica je spdsobena
konecnou velkostou siete a pocet uzlov s via¢Sim stupiiom je radu jedna. Ak pouzijeme
normaliza¢nt konStantu
TP(k)dk =1 (4.26)
ko
potom rovnici (4.26) vyhovuje takyto tvar distribucie stupiia uzlov
Pk)~|(y -0k |7 ky <k <k, . (4.27)

Ak y > 2, druhu hranicu &, odhadneme z kumulativnej distribucie

P, = TP(k)dk , (4.28)

ktora pocita pravdepodobnost’ vyskytu uzlov majtcich stupenn vac¢si ako isty stupen k. Ak je
pocet takych uzlov radove jedna, potom zrovnice (4.27), (4.28) a vztahu ¢P, (kmt (Z) ~1

vyplyva

1

k, ~ kgt (4.29)

Toto vSetko plati pre siete s mocninnou zavislostou distribicie stupna uzlov, teda tie,
ktoré¢ volame bezSkalovymi. Jedind Skala, ktora tu zohrava nejaka tlohu, je dana
prirodzenymi hranicami samotného problému. To, Ze tieto hranice existujl, staZzuje meranie
Skéalovacieho exponentu pre redlne siete. Napriklad meranie vel’kych Skalovacich exponentov
y je vdaka zavislosti (4.29) nemozné, pretoze linedrna Cast’ distribucie je vel'mi kratka aj

vtedy, ked’ je siet’ vel'mi vel'kd. Ked’ze Skéalovaci exponent sa meria ako tangens smerového



uhla pre distribiciu zobrazent v dvojitej logaritmickej Skale, potrebujeme, aby linearna Cast’
bola dostato¢ne dlha pre algoritmy fitujuce data priamkou.
Preskimajme teraz konecne siete so zrychlenym rastom [39], v ktorych priemerny

stupeni uzla nie je konstantny, ale rastie linearne s Casom
(k)oct®, a>0, (4.30)

kde a je exponent rastu. Ak uvazime, ze pocet hran v systéme je dany vzt'ahom (2.1) a pocet

N
uzlov v Case ¢ je N(t)=t, potom Zki = <k> N (t) , potom odtial’ dostaneme, ze

il
e(t) oc 1 (4.31)
Pre zrychleny rast mézeme predpokladat’, ze distribucia stupnia uzlov bude nestacionarna a
sprava sa takto [39]:
Plk,t)~t°k™ (4.32)
kde z >0 je novy Skdlovaci exponent. P(k) sa podl'a zdkona (4.32) sprava len v hraniciach
ko(t)—<k-<km (t) Podobnym postupom, ako pre siete bez zrychlené¢ho rastu, len s tym

rozdielom, Ze pouzijeme (4.32), ur¢ime, Ze

ko ()~ ¢ (4.33)
atiez
k., ()~ ¢ (4.34)
Rovnica (4.33) plati dokonca pre y >1.
Pozrime sa na dva pripady, 1<y <2 a y>2. Treba mat stdle na pamaiti, ze

uvazujeme len pripad, ked uzly do siete len pribudajl a Ziaden z nich zo siete neodbudne.

1. 1<y=<2

Pre siete so zrychlenym rastom, priemerny stupen uzlov rastie s casom podla rovnice (4.30).
k(‘lll

Preto, ak vypocitame <k> = J.kP(k)dk apouzijeme (4.32) a (4.34), dostaneme
ko

e
e ~ Iktzk‘7 dk~t™# ) ebo integral je dominovany hornou hranicou. Odtial

vidime, Ze a+1= (z + 1)/ ()/ - 1) aefekt koneCnosti systému dany £k, sa prejavi so
zohl'adnenim (4.31) a (4.33) takto
~ " ~et). (4.35)

cut



Cize hornou hranicou stupiia uzla je maximalny stupei, ktory je pre danu siet’ vobec mozny.
Horna hranica pre tento pripad teda vlastne neexistuje, resp. je dand len Casovo zavislym
poctom hréan v sieti. Z predoslych tivah je mozné urcit’ aj vzajomnu zavislost' Skalovacich
exponentov a, y a z:

z+1

y=1+ (4.36)

a+l
Ak sa m& y nachadzat’ v intervale (1,2), exponent z musi byt mensi ako a. Ak je distribucia

. 1
staciondrna, teda z =0 (4.32), potom y =1+ 1
a+

2. y>=2

V tomto pripade integral ¢ ~ J.ktzk_y dic~177"2'0) e dominovany dolnou hranicou.
1)
Odtial’ dostavame

y=1+2. (4.37)
a

Ak ma byt y vicSia ako dva, potom musi platit, ze z>a >0 atieZ aj to, ze staciondrna
distribticia stupnia uzlov v tomto pripade vobec neexistuje. Je tomu tak preto, ze ak z =0,
exponent y nemdze byt vacsi ako 2. To je vSak prave pripad, ktory rozoberame.

Tak ako v predoslej Casti, nech aj pre siete so zrychlenym rastom plati: p(k,s,t) je

pravdepodobnost’, ze uzol, ktory doSiel do siete v ¢ase s md v Case ¢ stupen k. Priemerny

stupeni uzla s, v ¢ase ¢ sa potom da vypocitat’ zo vztahu

k(s,t)= Tkp(k,s,t)dk. (4.38)

0
Predpokladajme, Ze pre bezSkéalové siete so zrychlenym rastom je k(s,t) dané takymto

vzt'ahom [39]

-B
(s, ) oc f{fj , (4.39)

kde 6 a f st Skalovacie exponenty. Da sa ukazat’ [39], Ze p(k,s,t) je

B B
pl,s,t)=1t° Gj g[kt“s(;) J (4.40)



kde g je Skalovacia funkcia. Z rovnice (4.39) a zo vztahu P(k,?)= %I plk,s,t)ds atiez (4.32)

0

mozno odvodit’ vztahy pre Skalovacie exponenty

1
— 14— 4.41
/4 +ﬂ (4.41)
a
S
-2 4.42
z 5 (4.42)

Ked vezmeme do uvahy rovnice pre Skdlovacie exponenty, moézeme konecne odvodit’ findlne
vztahy pre p(k,s,t) a P(k,t):

1 1

(1) (r-1)
S N
plkssit)= Ty & k-t (4:43)
Plk,t)= k7 Gll G, (4.44)

V (4.44) G( ) je Skalovacia funkcia. V pripade, Ze z=0 mame siete, v ktorych
nepozorujeme zrychleny rast.

V tejto Casti prace som uviedla vSeobecntl teodriu sieti so zrychlenym rastom. Vztahy
pre siete s linedrnym rastom, reprezentované napriklad BA modelom st vlastne limitnym
pripadom sieti so zrychlenym rastom. V nasledujucej podkapitole zistime, ako modely sieti
so zrychlenym rastom modeluju realne situacie. Neskor, v Casti dotykajicej sa praktickych
aplikdcii teorie sieti, ako ilustraciu toho, Ze teodria sieti nie je samoucelnd, ukdzem aj niektoré

realne siete, ktoré vznikali procesom zrychleného rastu.

4.5  Tlustrativne modely pre siete so zrychlenym rastom.

Predpokladajme, Ze naSa siet’ rastie tak, ako to bolo opisané v Uivode tejto Casti.
Predpokladajme d’alej, Ze pripajanie uzlov je preferencné, teda 7z, ~ k(s,t)+ A(t) a A(t) nech
je nejaké dodatocnd, vo vSeobecnosti Casovo zavislad velicina, ktor nazveme fitness, alebo aj
atraktivita uzla. Nech poCet hran, ktoré kazdu Casovu jednotku prinesie do systému novy
uzol, je dany mocninnym zdkonom c,¢“.

Nech najprv A(t) = A je od ¢asu nezavislou konstantou. Potom pre priemerny stupen

uzla, ktory prisiel do siete v ase s a my ho pozorujeme v Case ¢ plati



Ok(s,t) _ et k(s,t)+ A4 | (4.45)
o [li(s.1)+ 4] s

Poliatoéné a hrani¢né podmienky su 4(0,0)=k(z,7)=0. Ak rovnicu (4.45) vyriesime,
dostaneme vysledok
t a+l s —(a+l)
k(s,t)= A(—j = A(—j (4.46)
s t

a pouzijuc vztah (4.41) pre Skalovaci exponent distribucie stupnia uzlov ziskame

y=1+ (4.47)

a+l

Predstavme si na chvil'u, Ze Cas ¢ je zafixujeme. Potom k(s,t)oc s

a preto, lebo stupen
uzla nemoze rast’ nad vSetky medze, a +1>1. Odtial’ vidime, ze y <2 (4.47). Takato siet’ je
teda modelom pripadu 1< y <2, spominaného v Casti 4.4. Ak vypocitame distriblciu stupia

uzlov pomocou rovnice (4.8), dostaneme od Casu nezavisl, staciondrnu distribuciu

Ya+1) [ L
Plk)=2—k (3] (4.48)
a+1

Vzhl'adom na (4.36) pre z =0 tento vysledok nikoho neprekvapi.

Predpokladajme teraz, ze dodatocnd atraktivita (fitness) uzla v sieti nie je konStantna, ale

a

cot

sa meni s ¢asom. Konkrétne, nech A(t) =B , B>0, B nech je konStanta. Podobne, ako

a+l
v predoslom pripade moézeme vypocitat distribliciu stupnia uzlov. Ukazuje sa, Ze je

nestacionarna, a teda zavisla od ¢asu

Plk,t)~ t“(l+B)/(I_B”)k_(l+ll’+’i] (4.49)

ak k je omnoho vacsie ako ¢“. Vidime, Zze ak Ba <1, potom Skalovaci exponent

B 5. (4.50)

=1+
4 1-Ba

Takato siet’ je teda modelom druhého pripadu, opisané¢ho v Casti 4.4, kde y >2. Tymito

vypoctami som vlastne ukdzala, Ze mocninny rast priemerného stupnia uzlov v sieti vedie na
mocninnu distribucie stupna uzlov.

Teoria sieti so zrychlenym rastom umoziuje pochopit’ aj vlastnosti niektorych redlnych
sieti. UkaZem niekol'ko konkrétnych prikladov. O sietach jazyka a o svojich vlastnych

vysledkoch, tykajicich sa tohto Specidlneho typu sieti s casovo zavislou fitness budem



hovorit’ neskor. Na tomto mieste ukdzem modely distribtcie kapitalu v spolo¢nosti, ktora sa
s Casom nejakym sposobom meni. Ukazem tiez ako je bohatstvo rozdelené v spolo¢nosti,
ktora stagnuje, potom v tej, ktora sa rozvija a nakoniec v takej, ktord zanika [39].

Aby sme takéto spoloCenstvo mohli modelovat’, zavedieme niekol'ko zjednoduseni.
Budeme predpokladat’, Ze kazda casova jednotku sa narodi len jeden c¢lovek aze nik
nezomrie. Dalej predpokladame, Ze neexistuje Ziadna inflacia a peniaze sa nikde nestracaji.
Pod stabilnou spolo¢nostou budeme rozumiet’ taku, kde sa mnozstvo penazi vlastnenych
jedincom s c¢asom nemeni. Ak sa spoloCnost rozvija, tento kapital s cCasom rastie
a v zanikajuicich spolo¢nostiach, naopak, klesa. Ak je distribucia kapitalu £, P(k), dana
mocninnym zdkonom P(k) ok’ a y <2, potom spolocnost’ nie je férova. Nachadza sa v nej
vela Tudi, ktori vlastnia ve'mi malo, ale aj pomerne vela bohacov. Naopak ak y >2,
spolocenstvo je férové vtom, Ze pocet velmi bohatych TI'udi rychlo klesd s rasticim
bohatstvom. Ak P(k) klesa exponenciadlne rychlo, spolo¢nost’ je superférova, pretoze v nej

vel'mi majetni jedinci prakticky neexistuji. V tejto spolocnosti st si vSetci rovni, ale rovni
v chudobe.

Takato predstava o férovosti spoloCenstva sa moze zdat' trochu divnou. Za férovu
skor zvykneme povazovat taka spolo¢nost’, v ktorej je velky podiel relativne bohatych
jedincov a nie t, kde vSetci maju malo. Autori prace [39] vSak férovost’ definovali tak, ako
som to opisala vyssie.

Predstavme si, ze tok kapitalu do spoloc¢nosti je mocninnou funkciou Casu, teda je

umerny <k> o t“., Exponent a hovori otom aka spoloc¢nost’ je. Ak a =0, spolo¢nost’ je

stabilnd, ak je @ <0 (a > 0) spolo¢nost’ zanika (rozvija sa).

Zo skusenosti vSetci vieme, ze plati jednoduché pravidlo, ktoré sa d4 vyjadrit’ vetou
»peniaze pritahuji d’alSie peniaze®. Toto pravidlo je v spoloCnosti Casto vyvaZzované tym, ze
Cast’ bohatstva sa rozdel'uje rovnakym dielom medzi vSetkych jej clenov. Spravodlivost’ totiz
veli, Ze vo vicSine spolocenstiev ma kazdy jedinec ndrok na isty Startovaci kapital. Patria
k nemu peniaze, ale aj duchovné bohatstvo, predstavované napriklad vzdelanim. Aj vzdelanie
totiz mdze priniest’ ¢loveku nejaké peniaze. Isté mnoZzstvo kapitdlu moze cClovek dostat’ uz
pri narodeni. Pociato¢ny kapital jedinca moéze s Casom rast, alebo mdze ostat cely cas
konStantny .

V d’alSom budeme predpokladat’, Ze jednotlivi ¢lenovia spoloCenstva dostant nejaky
pociatocny kapital pri narodeni v ¢ase s, kde s <t. Pretoze, podla predpokladu, kazda

casovu jednotku sa narodi len jeden ¢len spolocnosti, ¢as narodenia s je aj identifikaénym



znakom, pomenovanim jedinca. Predpokladajme d’alej, ze k(s,t) je priemerny kapital osoby,

ktora sa narodila v Case s a my sa s nou stretneme v ¢ase z.

a) Stagnujuce spolocenstvo

Nech m, je kapital, ktory dostane osoba s pri narodeni. Nech 4 > 0 je dispozicia jedinca
zarabat’ peniaze. (VSimnime si, ze tato dispozicia (fitness) moze byt cely Zivot konStantna,
alebo moéze s casom rast, napriklad vd’aka vzdelaniu, ¢i klesat’, napriklad kvoli chorobe.)
Predpokladame, ze schopnost’ jedinca zardbat peniaze sa sa ¢asom nemeni. Kazdu Casovu
jednotku do spolo¢nosti prichadza kapital m, z ktorého jedinec dostane isty podiel. Zlomok p
z tohto kapitdlu je distribuovany rovnako kazdému, Cast’ (/-p) si jedinci privlastiiuju podla
zakona ,,peniaze prinasaju peniaze®, teda preferen¢ne. Individualne bohatstvo osoby s sa bude

s Casom vyvijat’ takto
ok(s,t)  pm (1= p)m k(s,t)+ A (4.51)
(k(s,2)+ A)ds

D
-~
~
o t—

s po&iatoénou podmienkou £(0,0)=0 as hraniénou podmienkou k(t,z)=m_. Ked rovnicu
(4.51) vyriesime a pomocou metdd spominanych v predoslych Castiach tejto kapitoly ziskame
distribuciu stupna uzlov, zistime, Ze ma mocninny charakter (4.15) s exponentom

_, pmEm + 4
(1= p)m

Pre stabilné spolocnosti plati, Ze st férové, ak teda férovost’ znamena relativnu rovnost

¥ - 2. (4.52)

bohatstva jedincov, aj ked’ je to rovnost’ v chudobe.

b) Spolocenstvo, ktoré sa rozvija alebo zanika

Predpokladajme teraz, ze Startovaci kapital, ktory jedinec dostane pri svojom narodeni
nie je konStantny, ale je umerny priemernému bohatstvu v spolo¢nosti m, (t) =dmt”, kde d je
kladné konStanta. Priemerné bohatstvo v spolo¢nosti sa s casom meni. Nech sa spolocenské
bohatstvo opédt’ distribuuje Ciasto¢ne férovo (teda rovnakym dielom kazdému) a Ciastocne
preferencne (teda ti, o maju viacej, aj viacej dostan(l). Nech zlomok férovo distribuovane;j
zlozky je p, a zlomok preferen¢ne distribuovanej zlozky nech je 1— p . Pre jednoduchost’ tieZ
predpokladajme, ze kazdy ma rovnakil (nulovu) dodatoénti schopnost zardbat peniaze

(A(s, t) = 0). Potom sa priemerné individudlne bohatstvo osoby s meni s casom takto



kst
k(s,t)ds

ak(s,t) _ mt“p N (l—

4.53
ot t ( )

p)mt

o t—

Pociato¢na podmienka aj v tomto pripade je k(0,0) =0 a hrani¢na podmienka k(t, t) =dmt”.
RieSenie rovnice (4.53) vedie k distribucii bohatstva, ktord zavisi od parametrov p, d a
a [39].
1. Ak a>(1- p)/(p+d), potom distribicia bohatstva je exponencidlna a spolo¢nost’ je
superférova.

2. Ak a<(1-p)/(p+d ), distribucia ma mocninny charakter s exponentom

(1+a)(p+d)
l-p-alp+d)

Ak v druhom pripade a =-1, potom y=2. To je prave hranica prechodu medzi férovou

y=2+

(7/ =2, > —1) a neférovou spolo¢nost’ou (}/ <2, a< —1). Tento bod prechodu nezavisi od

hodnét p ad, ¢o naznacuje, ze ani ak sa velka ¢ast’ nového majetku rozdel'uje férovo,
nezabrani to neférovej distribucii kapitalu v zanikajiicej spolocnosti. Tento zaver nijako
neprekvapuje, pretoze je vstlade snaSou sktsenostou. Pripominam, ze spolo¢nost
povazujeme za zanikajucu ak « <0, za rozvijajicu sa ak o >0 astabilni ak o =0. Treba
mat’ na paméti, ze férovost’ a rozvoj st dva rézne pojmy.

Vyssie opisané modelovanie toku kapitalu v spolo¢nosti je zrejme prili§ zjednoduSené.
Vnimavy citatel si pravdepodobne vSimol, Ze okrem inych zjednoduSeni sme mlcky
predpokladali aj neohranic¢enti dobu zivota jednotlivca. Ale aj napriek tomu, Ze modely maji
od reality d’aleko, predsa len ukazuji, ako mozno tedriu sieti pouzit’ v praxi. Ak by sme chceli
realistickej$i model, museli by sme citlivejSie zvazit', ktoré vplyvy su pre distribtciu kapitalu
dolezité a ktoré nie. Ak by sme vSak zahrnuli prili§ mnoho vplyvov, mozno by sme dostali
model, integro - diferencialnu rovnicu, ktori by bolo tazké analyticky vyriesit. Pri tvorbe
modelu musime vZdy brat’ do tivahy dva aspekty. Model by mal byt ¢o najrealisticke;jsi, ale,
ak vobec chceme ziskat' nejaké vysledky, aj rieSitelny. Samozrejme, mozeme urobit
pocitacovy model a numericky skimat, ako sa sprava. Analytické vysledky st vSak vzdy
cenn€, pretoze s presné.

Tedria sieti so zrychlenym rastom modeluje situacie, ktoré su Castokrat blizsie k realite
ako napriklad BA model a jeho varidcie. Tieto modely na zdklade principu preferencného

pripgjania uzlov vysvetluju vznik bezsSkalovych sieti. Nevysvetluju vSak ako sa v sietach



vytvara d’alSia dolezita vlastnost’, a to je hierarchicka organizéacia uzlov. Nepomdze nam ani

teoria sieti so zrychlenym rastom. V piatej ¢asti preto poviem o hierarchii nieco viac.

5. Hierarchické siete

V kapitole venovanej realnym sietam sme spomenuli, Ze ich bezskdlova Struktura je
casto doprevadzand hierarchickou Struktarou [15, 16, 17]. Z predosSlych casti tejto prace
vieme, Ze znakom bezskalovej siete je mocninna distribucia stupiia uzlov

Plk)ock™. (5.1)
Znakom hierarchického usporiadania je zasa mocninnd distribiicia priemernych
klasteriza¢nych koeficientov uzlov majucich stupen & [15], teda
Ck)oc k™, (5.2)

kde o je novy Skalovaci exponent.

Zakladna otazka, ktoru si odbornici v teorii sieti musia polozit’ je : Ak su bezskalové
a zéroven hierarchické siete v realite také Casté, musi existovat’ jednoduchy a prirodzeny
dynamicky proces, ktorym siet’ rastie a ktory vytvara hierarchicki bezskalova Strukturu.
RieSeniu tejto otazky sa, okrem inych, venovali aj autori prac [15, 16, 17]. Ako jedni
z prvych si ju polozili Ravaszova a Barabasi [15]. V praci [15] navrhli proces rastu siete,
ktory vytvara finalnu bezSkalov hierarchicktl Struktiru. Numerickou simuldciou sa im
podarilo ukazat, Ze hierarchickd a zdroven bezskdlovéa siet’ rastie tak, Zze sa v kazdom
casovom okamihu k sieti nepripaja len jeden uzol, ako je tomu napriklad v BA modeli, ale
viace] uzlov tvoriacich ista pevnu Struktiru.

Ravészovej a Barabasiho (RB) proces si najlepSie objasnime pomocou obrazku.
Na obrazku 10 vidime, Ze rast siete zacina z pociatocného piat uzlového modulu, ktory tvori
kompletny graf (obr. 10 a). Tento modul sa v nasledujicom kroku Styrikrat skopiruje a jeho kopie sa
pripoja k p6vodnému modulu tak, ze ich obvodové uzly sa pripoja kazdy jednou hranou k centralnemu
uzlu pévodného modulu (obr. 10b). Nova, 25 — uzlova Struktira sa opat’ Styrikrat skopiruje a jej
obvodové uzly sa pripoja k centralnemu uzlu pdvodného malého pat uzlového modulu (obr. 10c¢).
Centralny patuzlovy modul kopii sa nepripaja. Tento proces opakujeme tak dlho, pokial’ siet’ nie je
dostato¢ne velka na to, aby sa mohli zmerat’ jej vlastnosti, napriklad distribaciu stupnna uzlov a
distribuciu priemernych klasterizaénych koeficientov uzla stupiia k. Obe distribucie spinaji zakony

(5.1) a (5.2) sexponentami y =2.161 a 0 =1, teda siet, ktord vznikne RB procesom rastu, je

hierarchicka a bezskalova zaroven.



Ravaszova a Barabasi, vedomi si toho, ze pravidelné pripajanie nejakého modulu k sieti sa
v realite prili§ nepozoruje, utvorili d’alSiu, ndhodnt verziu svojho modelu. Siet opét zacina rast
z rovnakého pét’ uzlového pociatoéného modulu. Podobne ako v predoslom pripade sa tento modul
v dalSom kroku Styrikrat skopiruje. Zlomok p uzlov tychto kopii sa pripoji preferenénym spdsobom
k uzlom centralneho modulu (obrazok 11). Siet, ktora vznikne takymto procesom, je opit’ sietou

hierarchickou a bezskdlovou, ¢o znamena, zZe jej vlastnosti st vyjadrené zdkonmi (5.1) a (5.2) .

Skalovacie exponenty ¥ a & vsak zavia od p tak, Ze oba s rasticim p klesaju. Zavislosti 7(p) a

o ( p) su zatial’ zname len z numerickych simulécii, ich analytické vyjadrenie nepozname.

C)

Obrazok 10. Proces rastu hierarchickej bezskalovej siete podla autorov Ravaszovej a Barabasiho
[15]. Zalina sa z kompletného grafu o piatich uzloch a). V nasledujucom kroku sa urobia Styri
identické kopie zakladného modulu a uzly tychto kopii (okrem stredovych) sa pripoja kazdy jednou
hranou k centralnemu uzlu pévodného modulu b). Takto vzniknuty 25 uzlovy modul sa opéat’ Styrikrat
skopiruje a cely proces sa opakuje, lebo kazdy uzol kazdej kdpie (okrem stredovych uzlov a stredného
patuzlového modulu kopie) sa pripoji jednou hranou k centralnemu uzlu zakladného modulu. Na
obrazku c) su tieto hrany pre prehladnost’ viacsinou vynechané. Cely proces podobnym sposobom

pokracuje d’ale;j.

Dal§im autorom, ktory sa zaobera vznikom hierarchickej organizacie uzlov v siet’ach, je
Alexei Vasquez [16]. Ako priklad mu slazi www siet” a citacnd siet. O Struktire sieti vSak
Vasquez uvazuje trochu inym spdsobom ako Ravaszova a Barabési [15]. Zamyslal sa nad

tym, ako surferi, bludiaci po sieti, objavujii a zaroven tvoria a modifikuju jej Struktaru.



Vésquez si polozil otazku: Mdézu surferi len pomocou nahodného bludenia po sieti zistit’ ako
siet’ vyzera? Skor ako sa pustime do rieSenia tejto otdzky, definujme si, ¢o rozumieme pod
www siet'ou a cita¢nou sietou.

Pod www sietou myslime taka siet, v ktorej uzlami su www stranky, a smerovana
hrana vznikne vtedy, ked’ sa na stranke nachadza hypertextovy odkaz na nejaku inu stranku.
V druhej, citacnej sieti, uzlom je ¢lanok. Tento uzol spajaju smerované hrany so vSetkymi
uzlami (¢lankami), ktoré st v iom citované. Matematickou reprezentaciou oboch tychto sieti

je orientovany graf.

Obrazok 11. Ravasz — Barabasi model hierarchickej bezskalovej siete s nahodnostou. Siet’ rastie
podobne ako jej deterministickd verzia. Rozdiel spociva v tom, Ze v kazdom kroku sa pripoji len

zlomok p novopridanych uzlov.

Surfer, ktory surfuje v takychto sietach, ich Struktur spociatku vobec nepozna.
Bludenim po sieti ju pre seba objavuje, ale zaroven aj aktivne dotvara. Ak surfujeme
napriklad po www strankach, robime to v podstate dvoma spdsobmi. Niekedy pouZzijeme
vyhl'addvaci program, pomocou ktorého skofime ndhodne na nejaka stranku. Ak sa ndm
stranka paci a jej obsah je zaujimavy, moZeme sa v d'alSom kroku rozhodnut’ sledovat’ jeden
z hypertextovych odkazov na nej umiestnenych, aby sme sa o problematike, ktorej sa stranka
venuje, dozvedeli viacej. Alebo je pre néas stranka, na ktorej sa prave nachadzame
nezaujimava, a v d’alSom kroku jednoducho ndhodne sko¢ime na int stranku.

Podobne, ked’ Studujeme novli odbornu problematiku, hl'adame ¢lanky, ktoré by bolo
dobré si precitat. Prva pracu k danej téme si bud vyhl'addme pomocou vyhladdvacieho
programu, alebo nam ju niekto odporuéi (nahodny skok na uzol). Dalsie prace ziskame bud’
tak, ze si stiahneme niektoré z tych Clankov, ktoré dany cldnok citoval (sledovanie linky
siete), alebo opét’ pouzijeme vyhl'addvaci program ¢i odporucenie kolegu, ktory nam pontikne

novy ndhodny vyber prac.



Po sieti nemusi bludit’ len jeden surfer, moéze ich byt aj viacero. Surferi tym, ze po
sieti bludia, ju aj modifikujt, tvoria. Z ¢asu na Cas totiz kazdy z nich prida k uz existujucim
uzlom nejaku novu hranu. Aby som bola konkrétnejsia, pri bludeni po www sieti nas niektora
strinka moze natol’ko zaujat, Zze na svoju stranku si na fu priddme hypertextovy odkaz.
Popripade v citacnej sieti, ak je nejaky ¢lanok dobry a uzitocny pre nas vyskum, citujeme ho
v nasom vlastnom ¢lanku.

Vésquez vysSie popisany proces formalizoval takto: polozil si otazku s akou
pravdepodobnostou bude isty uzol i navstiveny jednym surferom. Téato pravdepodobnost’ je
suctom pravdepodobnosti nahodného skoku na uzol i a sictom pravdepodobnosti toho, Ze sa

k uzlu i dostaneme po hrane od niektorého z jeho susedov ; :

1-¢g v,
Vv, =—+ J. — 53
i N qu y k;}ut ( )

V rovnici (5.3) N je poCet uzlov v sieti, J, predstavuje maticu susednosti (vid'. Cast’ o teorii
grafov) a k7" je poCet hran vychadzajucich z uzla j. Veli¢ina ¢, oznacuje pravdepodobnost

toho, ze surfer, nachadzajuci sa na nejakom uzle, sa rozhodne pokra¢ovat’ putovanim pozdlz

hrany. S pravdepodobnostou 1—g¢, surfer sko¢ina iny, ndhodne vybrany uzol.

Ked’ze matica susednosti je zvycajne velkéd a riedka, rovnica (5.3) sa rie§i pomocou

aproximacie

1

l-¢q ;
v, =— ¢+ g OkK™. 5.4
N T4.9% (5.4)

Tu ® predstavuje priemerni hodnotu pravdepodobnosti, Ze uzol, ktory mé& hranu smerujucu

k uzlu i je navStiveny surferom, pricom © je podielom priemernej pravdepodobnosti <v>

a priemerného poctu hran, ktoré smeruji von z uzla [16]:

o= (5.5)

)

Ako sme uz spominali, surfer pri bludeni po sieti siet’ aj dotvara. Obcas prida

k nejakému uzlu novl hranu. Preto sa s ¢asom nemeni len pocet objavenych uzlov

ON
—=V,, 5.6
=V (5.6)
ale aj pocet hran v sieti
ge_ v.q,(V)N . (5.7)



V predoslych rovniciach v, je pocet uzlov pridanych do siete za jednotku Casu, v, je pocet

surferov a ¢, pravdepodobnost’ toho, Ze jeden surfer prida do siete nova hranu. RieSenim
rovnic (5.6) a (5.7) su zavislosti

N=v_t (5.8)

e= vsqv<v>Nt . (5.9

Priemerny pocet hran, ktoré do uzlov siete vchadzaju je taky isty ako pocet tych, ktoré z nich

vychadzaju

<k0uz>:<kin>:%:vsq“’/ﬂ , (510)

a

kde e je opit’ celkovy pocet hran a N pocet uzlov v sieti. Z rovnic (5.5) a (5.10) méZzeme O

vyjadrit’ pomocou meratel'nych veli¢in ako

@:qvaN . (5.11)

Ked toto vSetko vieme, vieme zistit aka bude vyslednd Struktira siete? Bude
hierarchickd a bezskalovd? Inymi slovami, vieme analyticky vypocitat’ distribliciu stupiia
uzlov a distribuciu priemernych klasterizacnych koeficientov? Vasquez vo svojej praci [16]
dokazuje, ze vzniknuta siet naozaj je bezskalova a hierarchicka zaroven.

Aby sme to mohli analyticky ukézat, potrebujeme najprv vypocitat, aka je
pravdepodobnost’ toho, Ze stupefi uzla, majuceho stupe k™ wvzrastie o jednotku. Tato

pravdepodobnost’ je dand vzt'ahom
Al )= g (k™). (5.12)
teda si¢inom pravdepodobnosti ¢, pridania hrany surferom a pravdepodobnosti, Ze jeden

surfer navstivi uzol so stupfiom k™. Ak do (5.12) dosadime (5.4) a (5.11), dostaneme

v

in l Va in
Alk )=N{qv(1—qe)+qe—k . (5.13)
Pomocou (5.13) je potom mozné vypocitat’ distribiciu stupna uzlov. Mézeme napisat’ tzv.
rovnicu pomerov (rate equation), vztah, ktory hovori, ako sa pocet uzlov dané¢ho stupnia meni
s ¢asom [10, 16]

6nk,-n .
=v.A, n, —-v.A.,n k" #0. (5.14)

ot stpin i s pin T8 pin >

Prvy ¢&len rovnice (5.14) znamend, Ze uzol zo stupfiom k™ dostaneme tak, Ze sa k uzlu so

stupiom k™ —1 pripoji jeden koniec hrany. Poget uzlov so stupfiom k" sa naopak zmensi,



ak sa k nejakému uzlu s takymto stupiiom pripoji koniec hrany. Toto popisuje druhy clen
rovnice (5.14). Ak rovnicu (5.14) upravime a pravu stranu prepiSeme pomocou derivacie (¢o
pre dostato¢ne vel'ké siete mézeme urobit’ [ 10, 33]), dostaneme
871 in aA il in
=y (5.15)
ot ok"

Rovnicu (5.15) vyrieSime, ak pouzijeme vztah (5.13) a predpoklad konecnej stacionarnej

distribucie stupna uzlov Pkm . Potom n o = NPk[,, az (5.15) po tpravach dostaneme
P.C =lc,—Cik™ ]aP—k"” , (5.16)
ok
kde C,, C,, C, st konStanty. RieSenim rovnice (5.16) je vzt'ah [16]
P (k). y=1+1. (5.17)
q.
Siet, ktori dostaneme Vasquezovym procesom prehladavania a dotvdrania mé teda
bezskalovh $truktiru. Skalovaci exponent y zavisi od veli¢iny g, .
Co vsak mozno povedat’ o hierarchickej organizacii uzlov? Véasquez analyticky dokazal
[16], Ze
C, k™, 5=1, (5.18)
teda, vzniknutd siet’ je aj hierarchicka.
Dé sa to ukazat’ takymto spdsobom: Klasterizacny koeficient uzla i je dany vzt'ahom
(2.3). To, o sa s casom meni, je pocet hran medzi susedmi uzla i [16]:

Z g g0k +q,). (519)

kde e, je pocet hran medzi susedmi uzla iaostatné veli¢iny znamenaji to isté, o

v predchéadzajucich vzt'ahoch. Pouzitim rovnic (5.4, 5.11, 5.13) a so zohl'adnenim toho, ze

ok™ A
81 = A(k;”) mozno za predpokladu, ze k je dostato¢ne vel'ké odvodit
4
Oe, ok,
—r ~ —+ X L . 5.20
= ra)— (5.20)

Integrovanim tejto rovnice za predpokladu, Zze e(ki” :0)=0dostaneme klasterizacny

koeficient C,

Cy z—z(lzq") , (5.21)

¢o nie je ni¢ iné ako (5.18).



Véazquezom popisané bludenie po sieti vSak nie je procesom rastu siete, aj ked’ si mozno
predstavit, ze s nim uzko suvisi. Novoobjaveny uzol mézeme povazovat za uzol prave
pridany do siete. Neskor uvidime, ze model rastucej siete, v ktorom sa kombinuju lokalne
zékony pripdjania hran a pripajanie uzlov, mozno pretransformovat na Vasquezovu siet

a analyticky vyriesit’ [17].

6. Rozne aplikacie teorie dynamickych sieti

V tejto casti ukdZem niekol’ko aplikacii tedrie dynamickych sieti v jazykovede, bioldgii
aj informatike. Budem uvazovat' aj o tom, akym prinosom modze byt tito relativne nova

teoria pre umelu inteligenciu.

6.1. Slovna siet’

Teoria sieti priniesla zaujimavy pohl'ad na Struktaru lexikonu 'udského jazyka. Skiisme
sa pozriet na lexikoén ako na slovnl siet. Predstavme si, Ze slovo je uzol a ak dané slovo
nejakym sposobom interaguje s inymi slovami, mézeme povedat’, ze je s nimi spojené hranou.

Co to vsak znamena ,slovo interaguje sinym slovom“? V zasade st mozné dva
spdsoby interakcie slov. Prvy spOsob zvyrazituje sémanticky [7] a druhy spdsob syntakticky
aspekt jazyka [8, 40, 41].

Predstavme si, ze interakciu slov definujeme pomocou vykladového slovniku. Slovo,
ktoré ma v slovniku heslo, nech je uzlom. Vsetky slova, ktoré nase slovo opisuju a st zaroven
aj samé slovnikovymi heslami, povazujeme s danym slovom za spojené hranou. Takymto
sposobom modzeme vybudovat’ sémantickll slovnu siet. Jej vlastnosti skimal Motter a jeho
kolegovia [7]. Merali distribaciu stupfia uzlov aukazali, Ze s rasticim stupiiom klesa
exponencialne. Takato slovna siet’ (word web) teda nie je bezskéalova.

Ak je vSak interakcia slov definovand susedstvom vo vete, dostaneme syntaktickl
slovnu siet’. V nej slovo opit’ predstavuje uzol a vSetky slova, ktoré sa vo vetach vyskytuju
ako jeho najblizsi susedia, su s tymto uzlom spojené hranou. Takato siet’ sa teda buduje na
zéklade velkej databazy textov dostatocne dobre reprezentujucich skumany jazyk. Siet’ sa
tvori takto: zvolime nejaké slovo a vyhl'addvame ho v textoch databdzy. Zarovent vyhl'adame
aj slova, ktoré st najbliz§imi susedmi daného slova vo vetach, kde sa naSe slovo vyskytuje.

Potom to 1sté urobime so susedmi zvoleného slova.



Ferrer a Solé analyzovali vlastnosti syntaktickej slovnej siete zostrojenej na zéklade
textov anglického nadrodného korpusu [8]. Distribucia stupna uzlov tejto siete naznacuje, Ze ju
mozno povazovat za bezskalovu (5.1) avSak s tym rozdielom, ze pozorujeme dva skalovacie
rezimy (obrazok 12) s dvoma réznymi skdlovacimi exponentami. Pre uzly s menSim stupiiom
Skalovaci exponent y, =1.5 apre uzly svy$§im stupiom p, =2.7. Druhd hodnota
Skalovacieho exponentu je blizka (ale nie totoznd) s hodnotou y,, =3.0.

V snahe vysvetlit, preCo v syntaktickej slovnej sieti existuju dva Skalovacie rezimy,
vzniklo niekol'ko prac [40, 41]. My sme experimentovali s roznymi anglickymi prekladmi
Biblie [42] a r6znymi anglickymi textami z projektu Gutenberg [43]. Na obrazku 12 vidime
distribuciu stupiia uzlov biblickych syntaktickych sieti. V oboch pripadoch sme pozorovali
podobny efekt ako Ferrer a Solé, len sme namerali trochu iné Skélovacie exponenty y, a 7, .
Domnievame sa, Ze to moze to byt sposobené horSou Statistikou, pretoze nasa siet’ mé desat’
krat menej uzlov ako siet’ Ferrera a Solého. Pocet slov v Biblii je totiZ silne obmédzeny a je
mnoho takych slov, ktoré sa v Biblii vobec nevyskytuju. V tomto smere Biblia pripomina
Specializovany odborny text. Preto je dost dobre mozné, ¢o potvrdzuje aj analyza textov

z projektu Gutenberg [43], ze 4, =1.5 a ¥, mé hodnotu len o nie¢o menSiu ako y,, =3.

All versions (logarithmic binning distribution)

T . . ; T
103 | o .
10° | . ey O E
" om ‘*"QQ

i =122 . ."irgs_; )
10! F " - g i
0 T

L m-X

.'i Cr-..
g

10° | EED E

I N{k) !._}_ o

T
.
10! | '!._?ﬁ 7
L
102 b L=2202 g §3 ]
~ 4+ ®:
| . %% D
3 ki + Ll
10° F drv r
asv x

| nrsv O k

10-11- bbe - 1 1 1
10° 10’ 102 10° 10t

Obrazok 12. Distribucia stupna uzlov pre syntakticku slovnu siet’, ktora bola skon$truovana na baze
anglickych prekladov Biblie. Niektoré preklady su starSie (Douay Rheims verzia, djv, rok vydania
1582; King James verzia, kjv ,1611), iné moderné (American Standard verzia, asv,1901; Basic English



verzia, bbe, 1941; New Revisited Standard verzia, nrsv, 1989). bbe je Specialny pripad, lebo text bol
umelo zjednoduSovany. Siete maju tento pocet uzlov: drv — 11423, kjv — 11624, asv — 10105, nrsv —
14985, bbe — 4961.

Ferrer a Solé sa domnievaju, ze existencia dvoch Skéalovacich rezimov v distribacii stupiia
uzlov je spdsobend rozdielnou dynamikou periférie a jadra jazyka [8]. Pod jadrom jazyka
rozumieme slova, ktoré tvoria zdklad jazyka pouzZivany vSetkymi prislusnikmi danej
jazykovej skupiny, bez ohladu na vek, pohlavie, vzdelanie, ¢i iné aspekty. Jadro jazyka
obycajne obsahuje okolo 10* slov, pomocou ktorych mozno vyjadrit takmer vsetko.
V slovnej sieti su slova z jadra jazyka vacsinou tie, ktoré si s inymi slovami dobre prepojené.
Predstavujul teda obycajne tie uzly slovnej siete, ktoré maji vyssi stupen. Slova z jazykove;j
periférie su jednak slangové vyrazy, jednak odborné terminologia, jednak nové slova, teda tie,
ktorym nemusi rozumiet’ kazdy. V slovnej sieti tieto slovd maju zvyc€ajne mens$i stupen,
pretoZze sa vo vetach pouzivaju v obmedzenom kontexte. Podl'a Ferrera a Solého dynamika
jadra jazyka je v podstate ustalend a mozno ju modelovat’ pomocou BA procesu, zatial’ ¢o pre
jazykovu perifériu to neplati.

S tymto vysvetlenim nesuhlasia Dorogovtsev a Mendes [41]. Autori prace [41] uvazuju
takto: Kontext, v ktorom sa slovéa pouzivaju, sa s ¢asom meni. Vac¢Sinou sa obohacuje. Vd'aka
tomu sa nové hrany do slovnej siete nepridavaji len s novymi uzlami, ale moézu vzniknut’ aj
medzi slovami, ktoré si uz v slovniku dlhSie. Dorogovtsev a Mendes vytvorili model,
ktorého zékladom je BA model (vid'. ¢ast’ 4.2), obohateny o novy proces tvorby hran medzi
starymi slovami: Podobne, ako v BA modeli
1. Na zaciatku rastu siete mame par uzlov pospdjanych niekol’kymi hranami. O aky

pociatocny graf sa jednd na tom v podstate prili§ nezéalezi, lebo vlastnosti velkej siete

pociatocny graf neovplyvni.
2. Nech kazdu ¢asovu jednotku odkial’si z vesmiru prileti jeden uzol a pripoji sa preferencne

m hranami k starym uzlom.

3. Vtom istom okamihu vznikne medzi starymi uzlami 2ct, (0<c <<1) novych hrdn.

Tieto nové hrany prepoja staré uzly preferenénym sposobom.

4. Opakujeme od bodu 2. Siet’, ktorej findlnu Struktiru skimame, musi byt dostato¢ne
vel'ka, ¢im dlhSie simulacia beZi, tym presnejSie zmeriame charakteristiky siete.
Dorogovtsevov — Mendesov model (DM model) je matematickym vyjadrenim vysSie

uvedenych efektov:



=(m+ ZCt)M. (6.1)

V rovnici (6.1) integral predstavuje normovaciu konstantu, teda sucet vSetkych stupniov uzlov.
k(s,t), tak ako v predoslych podobnych rovniciach, predstavuje priemerny stupen uzla, ktory
dosiel do siete v ase s a pozorujeme ho v ¢ase . m je pocet hran, ktoré do siete prinesie
kazdy novy uzol a 2ct je pocet koncov hran, ktoré prepoja staré uzly preferenénym spdsobom.

DM model (6.10) sa da analyticky vyriesit. Ak preintegrujeme obe strany rovnice cez
t
s v hraniciach od 0 do 7 ( Ids ), dostaneme

, j k(s,)ds
Ids Ok(s.1) =(m+ 2ct)0t— =m+2ct. (6.2)

J.k(s,t)ds

Odtial’ s pouzitim hrani¢nej podmienky k(t,t): m avztahu znameho z matematiky [36]

t t
Ik(s,t)ds = k(t,t)+ I%k(s,t)ds =2m+ 2ct dostaneme

0 0

9
o

[ (s, e)ds = 2mt +ct* . (6.3)

0

Ked’ (6.3) dosadime do (6.1) a rovnicu (6.1) vyrieSime, dostaneme vysledok [41]

t % 2m+ct %
k(S’t)_(;j (2m+csj ’ (©H

¢o vedie na distribuciu ako na obrazku 12 [41]. Pre uzly s indexom s <<t (teda pre slova,

DM=3

ktoré maji Sancu mat’ vel’ky stupeni, lebo prisli do siete skoro) Skalovaci exponent y,

a pre uzly s indexom s ~ ¢ $kélovaci exponent " =1.5.

DM model teda, zakomponovanim procesu vzniku novych hran medzi starymi uzlami,
dokazal vysvetlit' vznik dvojrezimovej distriblicie stupna uzlov (obrazok 12). Pozorny Citatel’
si mozno uvedomil aj to, Ze rovnica (6.1) je vlastne rovnicou s ¢asovo zavislou atraktivitou

(fitness) uzla, ak A(t)=2k(s,z)ct. Je tu vSak eite jeden problém. Naprick tomu, z¢ DM

model je kvalitativne speSny, merania Fererra a Solého [8], ako aj naSe vlastné [42, 43]

ukazuji, ze medzi experimentadlnymi datami a modelom je istd nepresnost. V oboch

measured

pripadoch namerany exponent y; v strmSej Casti distribucie stupnia uzlov nedosahuje



hodnotu 3, ktoru predikuje DM model. V menej strmej Casti distribucie je to v poriadku a

yPM = yresred =1 5. Ustdila som teda [40], Ze to nie je ndhoda a DM model nie je Gplne

postacujucim modelom syntaktickej slovnej siete.

Aby som objasnila rozdiel medzi nameranym a vypocitanym Skalovacim exponentom
pre uzly s velkym stupiiom, navrhla som obohatit’ DM proces rastu siete o d’alsi efekt, ktory
by nebol v rozpore s pozorovanym vyvojom lexikénu jazyka.

Sktsme spoloc¢ne trochu uvazovat. To, Co vyjadruje DM model, totiz ze do lexikonu
nielenze pribudaju nové slova, ale aj staré slova sa dostavaju do nového kontextu, je pravda.
Napriklad slovo Boh sa najprv pouzivalo na oznacenie Slnka, Mesiaca, hromu, alebo inych
prirodnycho ukazov. Dnes mé toto slovo zlozity psychologicko — nabozensko — filozoficky
obsah. Pocas vyvoja slovnika (rastu slovnej siete) sa tento pojem zacal pouzivat' v takych
kontextoch (vznikli nové hrany medzi starymi slovami), ktoré s pdvodnym vyznamom maja
uz maloco spolo¢né. Avsak slova nielen ziskavaju, ale aj stracaju kontext. Napriklad slovo
pocitac eSte pred par desiatkami rokov znamenalo pomenovanie zariadenia zaberajuceho celt
vel'ka halu. Dnes si pod tymto pojmom skor predstavime malé PC, popripade notebook. Veta
,Odnes mi pocita¢ na stdl, prosim.“ dnes nikoho neprekvapi. ESte nedavno by sa vSak vas
asistent takejto prosbe velmi zacudoval. Ale prikaz ,Najdite velku miestnost’ pre
umiestnenie nového pocitaca® by ho vobec neprekvapil. Slovo ,,pocitac” sa v minulosti
v kontexte ,,na stole* nepouzivalo. Pouzivalo sa v inych kontextoch, ktoré uz dnes prestali
platit. Vzhl'adom na podobné uvahy som pdvodny DM proces rastu siete modifikovala
takto:

1. Na zaciatku mame par uzlov pospdjanych niekol’kymi hranami. O aky pociatocny graf sa
jedna na tom v podstate prili§ nezéalezi, lebo vlastnosti vel'kej siete pociatocny graf prilis
neovplyvni.

2. Nech kazdu ¢asovu jednotku odkial’si z vesmiru prileti jeden uzol a pripoji sa preferencne
m hranami k starym uzlom.

3. V tom istom okamihu vznikne medzi starymi uzlami 2ct, (0 <c=< 1) novych hran. Tieto
nové hrany prepoja staré uzly preferenénym spdsobom.

4. Simultinne s javmi 2. a 3. sa nahodne zvoli m, starych uzlov od ktorych sa odpoji
koniec jednej hrany a prelinkuje sa preferencne k inému uzlu.

5. Opakujeme od bodu 2. Siet’, ktorej finalnu Struktaru skimame, musi byt dostatocne

velka, takZze ¢im dlhSie simuldcia beZzi, tym presnejSie zmeriame charakteristiky siete.



Model, matematicky popisujuci horeuvedené procesy, som nazvala modelom s prelinkovanim
hrdan (edge rewiring, teda RW model). Matematicky ho mozno reprezentovat’ integro —

diferencialnov rovnicov.

akgs,t) =(m+2ct+m, )t— ——L. (6.5)
! Ik(s,t)ds !
0

V rovnici (6.5) prvy ¢len na pravej strane popisuje preferenéné pripajanie m -+ 2ct +mr
koncov hran. m z nich prinesie novy uzol, ¢t hran (2ct koncov hran) sa vytvori medzi starymi
uzlami a m, hran sa prepoji. Druhy ¢len rovnice (6.5) vyjadruje odpojenie jedného konca
hrany od m, nahodne zvolenych uzlov.

Proces presmerovania hran neovplyviiuje sucet vSetkych stupniov uzlov a teda integral
v menovateli rovnice (6.5) je rovnaky ako v DM modeli (6.3). Ak ho dosadime do rovnice

(6.5) a takto upravenu rovnicu vyrieSime, dostaneme

m+m,. m,

k(s 1) oc (%2’"( 2m ¥ c’j B (6.6)

) 2m+cs

Toto riesenie vedie na taku ist distribuciu stupiia uzlov ako v DM modeli, ale s rozdielnymi

. . . Y m-—m,
Skalovacimi exponentami [40]. Ak s <<¢ z rovnice (6.6) vypocitame y3” =2+ :

2m

V pripade s ~¢, " =1.5. Ak pocet ndhodne vybranych starych uzlov, od ktorych sa odpoji

jeden koniec hrany je mensi ako celkovy pocet hran prinesenych novymi uzlami, Skalovaci

exponent pre uzly s velkym stupfiom bude mensi ako y2* =3 a véicsi ako 2. V menej strme;j
Casti distribucie sa efekt prepdjania hran na hodnote Skélovacieho exponentu neprejavi.

Nae merania biblickej slovnej siete ukazuju [42], ze ak 2" =2.13 aak

novoprichddzajuce slovo ma v priemere okolo 10 spojeni so starymi slovami, potom

. ~7.7. Vidime teda, ze RW model je celkom realisticky. Efekt prelinkovania hran, ktory

bol pridany k DM modelu, vysvetlil systematicktl chybu medzi predpoved’ou tedrie a datami.
Navyse fakt, ze slovo s ¢asom meni kontext, patri k prirodzenym javom vo vyvoji lexikénu
I'udského jazyka. RW model tak presnejSie vystihuje namerané data a odstrafiuje nedostatky

predoslych modelov.



6.2. Funkcna siet’ mozgu v konkrétnom experimente.

Ako som uz spomenula v tretej Casti, funkéné siete mozgu su prikladom ad hoc sieti.
V tychto sietach za uzol pokladdme voxel a hrana medzi dvoma voxelmi existuje vtedy, ked’
su aktivity voxelov ¢asovo skorelované [3].

Pocas svojho pobytu na Department of Computer Science, Otago University, Dunedin,
Novy Z¢land, som spolu s kolegynami Lubicou Beniuskovou a Liz Franz, mala moznost’
Studovat’ funkénu siet’ mozgu, extrahovani z nameranych dat [44]. Niekol'ko meranych
0sOb sa podielalo na experimente, pri ktorom mali striedavo rytmicky tukat palcom a
ukazovakom pravej alavej ruky. Rytmus tukania urCoval zvukovy signal, frekvencia
tukania priblizne zodpovedala jednému t'uknutiu palcom a ukazovakom za sekundu.

Merali sme $tyri zdravé osoby. Dve z nich boli zeny (subjekt 1 a 3, vid’. tabulka 1, 2) vo
veku 55 a 46 rokov. Dvaja muzi (subjekt 2 a 4) mali 60 a 23 rokov.

Pred zberom fmri dat je vzdy potrebné, aby mozog relaxoval. Poziadali sme preto
frekventantov, aby chvil’ku pokojne odpocivali. Potom nasledovalo prvé, Sestnast'sekundové
referenéné meranie, pocas ktorého merané osoby neplnili zZiadnu tlohu. Skusobné meranie
malo len pripravit’ nasich frekventantov na experiment a preto sme ho pri extrakcii funkénych
sieti nebrali do uvahy. Po tomto zahrievacom kole nasledovalo 6 dvadsat'sekundovych
meracich cyklov, pocast’ ktorych osoby plnili danti ulohu (task cyklus), striedanych Siestimi
dvdsat’sekundovymi cyklami oddychu (rest cyklus). Fmri signdl mozgu sme merali
v jednotlivych voxeloch. Voxely st uloZzené v 6smych vrstvach (obrazok 6). Matica voxelov
v jednej vrstve ma vel'kost’ 64 x 64, teda celkovy pocet voxelov je 64 x 64 x § = 32768. Jeden
meraci cyklus pozostava z desiatich merani. Ked’Ze kazdy meraci cyklus trva dvadsat’ sekind,
je zrejmé, Ze scanner ziska data z celého mozgu v priebehu dvoch sekund.

Namerané data sme potom spracovali nasledovnym postupom: V prvom rade sme pre
kazdy subjekt spriemerovali vSetky rest aj task merania. Potlacili sme tym Sum a zvyraznili
signal. Pred spriemernenim, sa hodnoty signdlov v cykloch rest aj task pohybovali
v rozmedzi 0 az 500 jednotiek. Je zname [45], Ze rozdiel hodndt rest a task signalu nie je
velky, v najlepSom pripade to predstavuje péat’ percent. Preto sme sa zaujimali aj o pozitivne
aj onegativne nadprahové casové korelacie signalov. V d’alSom kroku sme spocitali
korelacny koeficient pre 80 milionov ndhodne zvolenych parov voxelov. Korela¢ny koeficient

sme urc¢ili pomocou vztahu

T = = 67



kde o (s(t)) = <s2 (t)> - <s(t)>2 , s(t) je aktivita voxelu v Case ¢ (merand v nejakych jednotkach) a
<> predstavuje Casové priemerovanie. Do uvahy sme brali iba tie voxely, ktoré mali

nadprahovu aktivitu (100 jednotiek v prvom pripade, alebo 200 jednotiek v druhom pripade).

Pre obidve nadprahové aktivity sme zvolili prahovy korela¢ny koeficient », =0.8. Vysledky

pre rozne prahové aktivity sa v zadsade v ni¢om neliSia, preto sme d’alSie hodnoty prahovych
aktivit nepouzili. Skimali sme vSak, ako bude vyzerat’ extrahovana funkcna siet’ mozgu ak by
bol prah aktivity voxelov nulovy. V tomto pripade sa vysledky vyrazne liSili. Siet’ stratila
akukol'vek zaujimavi Struktiru astala sa ndhodnou. Domnievame sa, Zze napriek
spriemerovaniu signalov, malé aktivity voxelov st vlastne tvorené Sumom. Vlastnosti
extrahovanych funkénych sieti pre obidve prahové hodnoty aktivit voxelov st zhrnuté

v tabul’kach 1 a 2.

Subject||N |C L ¥
task |rc5~'1; task|1'f::-at tewk|rcst
S53010.0358|0.0358) 5.12(5.10)1.99(2.04
5415(0.047(0.047T) 4.50({4.49]1.4411.11
5T72000.047]0.047)4.314.04(1.39|1.39
S535(0.,0358|0.036) 5.12(5.13)2.26(2.23

e

Tabulka 1. Vlastnosti funk¢nej siete mozgu extrahovanej z nameranych dat. Prah aktivity je 700

jednotiek, korelacny prah je », =0.8. N je pocet uzlov siete, C predstavuje klasterizacny koeficient

siete, L je separacia uzlov a ¥ je Skalovaci exponent mocninnej ¢asti distribucie stupna uzlov.

Subject|[N C L ¥
task [rest [task|rest [task|rest
1260]0.036]0.038] 5.41]5.42]2.16|2.08
A442000.047 (0,047 4.74|4.79)1.54]1.33
S030(0.047 (0047 4.37|4.12|1.36]1.34
4265(0.040(0.038| 5.41|5.40|2.05]2.38

=l b =

Tabulka 2. Vlastnosti funkcnej siete mozgu extrahovanej z nameranych dat. Prah aktivity je 200
a korelacny prah je taky isty ako v predoslej tabul’ke, 7, = 0.8. Ostatné veli¢iny znamenaju to isté ako

v predchadzajicej tabulke.

Aktivitu voxelov sme povazovali za vyznamne skorelovant, ak vypocitana hodnota

korelatného koeficientu bola vidcSia ako 7 =0.8 (korelicia), alebo mensia ako



r, = —0.8 (antikorelacia). Statistické a topologické charakteristiky siete sme vypoéitali s

pomocou vol'ne dostupného nastroja na analyzu sieti Network Workbench [34].
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Obrazok 13 . Distribucia stupiia uzlov vo funk¢nej sieti extrahovanej pre subjekt 2. a) zobrazenie v
log — log skale pre cyklus rest, b) zobrazenie v log — log Skale pre cyklus task, ¢) zobrazenie v log —

linear $kale pre cyklus rest, d) zobrazenie v log - linear $kale pre cyklus task.

Aby sme zistili, ¢i extrahované siete st sietami malého sveta, vypocitali sme
klasterizacny koeficient a separaciu uzlov ndhodného grafu srovnakym poctom uzlov

a s rovnakym priemernym stupfiom uzla ako maju funkéné siete:

Crandom = (68)

(6.9)

kde N je pocet uzlov a <k> je priemerny stupen uzla. Pre siete ekvivalentné nasim

, v 7 ) _ -3 4 . Mo o 4o , ..
extrahovanym funkénym sietam C,,,,, =107 =107 a L . ~~4. Ci siet ma vlastnosti siete

malého sveta mozno urcit’ pomocou tzv. indexu malého sveta [1]



C L
o7 (Crandom j/(l’mndom j ' (6 10)

Vo vsetkych naSich sietach bol tento index vysoky (o ~10—100). Z toho usudzujeme, Ze
funk¢né siete, extrahované z nameranych dat, su zaroven sietami malého sveta.

St funkcéné siete mozgu aj bezskdlovymi sietami? Ak sme linedrnu cast’ log — log
zobrazenia distribucie stupnia uzlov prelozili priamkou, dostali sme pre vsetky siete

Skélovacie exponenty s hodnotami v rozmedzi 1.0 <y <2.5. Treba vSak dodat’, Ze nie vzdy

bola linearna Cast’ distribucie dostatocne vyraznd. Plati to hlavne pre siete ziskané v rest
cykle. Z tabuliek 1 a 2 mozno vidiet, ze hodnoty Skalovacich exponentov pre pripad rest
atask sa pre jednotlivé merané osoby prili§ neliSia. Rozdiely vSak pozorujeme medzi
réznymi osobami. Moé6ze to byt len nihoda, avSak je dost’ dobre mozné, Ze pre tieto
individualne rozdiely existuje nejaky, zatial’ nezisteny, dovod. Na to, aby sme ho mohli ngjst’,
potrebujeme vAcsi Statisticky subor merani.

Fakt, ze hodnoty Skalovacich exponentov v rest atask cykle sa neliSia, potvrdil aj
Eguiluz ajeho spolupracovnici [26]. Zistil, Ze rozdiely neexistuju ani vtedy, ked je
kognitivna tloha naro¢nejsia (pocivanie hudby).

Ak sa lepsie pozrieme na obrazok 13, vidime, ze tvar distribucie stupiia uzlov sa pre
rest a task cyklus dost’ 1i8i. Hoci na obrazku st zobrazené len distribucie jedného subjektu,
rozdiel je viditeI'ny vo vSetkych Styroch pripadoch. Spociva v tom, Ze linearna ast’ distribucie
je vyraznejsia v pripade task cyklu ako v pripade rest cyklu (obrazok 13a, b). Znamena to, Ze
bezskalova Struktura funkcnej siete sa zvyraziuje, ak mozog pracuje na nejakej tlohe. Je
vyraznejSia dokonca aj vtedy, ak je tato uloha taka jednoduchd ako rytmické tukanie
prstami. Spomenuty rozdiel mozno eSte lepSie pozorovat’ pri zobrazeni v log — linear Skale
(obrazok 13c, d), kde je zavislost' linearnejSia v cykle rest, ¢o by naznacilo skor
exponencialne klesajucu distribiciu stupna uzlov.

Na zaver konStatujeme, ze vSetky siete, nezavisle od toho, ¢i boli extrahované z dat
v cykle rest alebo task, majui charakter sieti malého sveta. Zda sa tiez, Ze funkcéné siete maju
vy$$i stupeil organizécie v Stadiu task, ¢o vidiet’ z toho, Ze distribucia stupnia uzlov v log — log
zobrazeni ma v task peridode vyraznejSiu linearnu Cast’ ako v rest periode. Aby sme vSak mohli
urobit’ presnejsie zavery, potrebujeme omnoho VAcCSi Statisticky subor merani.

Urcite by bolo zaujimavé vediet’, aky je vzt'ah funk¢nej a anatomickej neurdénove;j siete
mozgu. Niektoré stadie dokazuju [46], Ze neurdnova siet’ mozgu je sice sietou malého sveta,

ale nie je bezskéalovou sietou. Z hl'adiska prac Equiluza a kol. [26] a van den Heuvela a kol.,



atiez Chialva [3], ktori tvrdia, Ze funk¢né siete mozgu si bezSkalové, je tento vysledok
prekvapujici. Nasa praca vSak ukazuje, ze bezSkalovost’ Struktiry funkénych sieti mozgu,
minimalne v peridde rest, mozno spochybnit’.

Domnievame sa, ze d’alsi vyskum funkénych sieti mozgu, ktory by Studoval funkéné

siete mozgu vo vzt'ahu k jeho anatomickej Struktare, by mohol do veci vniest’ viacej svetla.

6.3. Hierarchia v rastucej sieti s lokalnymi pravidlami.

V kapitole 5 sme hovorili o hierarchickych bezskalovych sietach. Rozobrali sme dva
procesy, pomocou ktorych vznikd v sietach hierarchia, ato bez toho, aby sa narusila
bezskalova Struktara. Prvy proces pripajania fixnej Struktiry uzlov je tak trochu umely [15].
Aj ked’ ho autori znahodnili, v skuto¢nosti len tazko mozno najst siet, ktord by rastla
prip4janim pravidelnej Struktary uzlov.

Na druhej strane Véasquezov model [16] hovori skor o tom, ako objavujeme, popripade
dotvarame siet’, ktora uz existuje. My sa vSak zaoberame rastiicimi siet'ami. Je preto namieste
otazka, ¢i existuje nejaky jednoduchy proces rastu siete, podobny napriklad BA procesu, ktory
by sme poznali zo skusenosti, aktory by prirodzenym sposobom vytvaral hierarchické
bezskalové siete. Preferenéné pripéjanie uzlov sice vedie na bezskalov, ale nie hiererchicka
Struktaru siete [9, 10, 33].

Zamysleli sme sa nad touto otdzkou [17] a vytvorili sme model rastucej siete, ktory sme
nazvali modelom riadenym klasterizaciou (CD model, clustering driven model). Siet’ riadena
klasterizaciou rastie takymto procesom:

1. Na zaciatku méme par uzlov pospajanych niekol’kymi hranami. O aky pociatocny graf sa
jedna na tom v podstate prili§ nezélezi, lebo vlastnosti vel'kej siete pociatocny graf vobec
neovplyvni.

2. Nech kazdu ¢asovu jednotku odkial’si z vesmiru prileti jeden uzol a pripoji sa m hranami
k starym uzlom. Uzly st indexované ¢asom svojho prichosu do siete s.

3. Spoésob pripojenia je nasledovny. Jedna hrana sa pripoji s najvicsou pravdepodob-

nost’ou k tomu uzglu, ktory ma najvicsi klasterizacny koeficient. Pripoji sa s k nemu

pravdepodobnost’ou
C
=— 6.11
”(S) W(t)’ ( )
alebo
() = e (6.12)



kde W(t) = Z C; a C,; nie je ni€ in¢ ako klasterizaCny koeficient uzla i (2.3). M6Zeme

i1
implementovat’ obe klasterizdciou riadené pravdepodobnosti pripdjania hrén,
pravdepodobnost’ (6.8) ma vsSak ti vyhodu, Ze je nezavisla od pociatocného
modulu. Ostatnych m—1 hran sa pripoji nahodne k susedom uzla i.

Dovolim si eSte par poznamok k rovniciam (6.11), (6.12). Ak je klasteriza¢ny

koeficient uzla s nulovy, potom pravdepodobnost’ 7Z'(S) (6.11) pripojenia  hrany

k tomuto uzlu je nulova, zatial’ o z rovnice (6.12) vyplyva, ze aj vtomto pripade

existuje mald, nenulovd pravdepodobnost’ 7, (s) pripojenia hrany k uzlu s.
W(t)= <C>t, kde <C> je priemerny klasterizacny koeficient uzlov siete. <C> je pre

dostato¢ne vel'ké ¢ nezavisly od Casu, a preto sa pravdepodobnosti (6.11) a (6.12) pre
t > spravaju rovnako. Ako vidiet z obrazku 14, siete modelované pomocou
pravdepodobnosti (6.11) a (6.12) aj vizudlne vyzeraji vel'mi podobne.
4. Opakujeme od bodu 2. Siet’, ktorej findlnu Struktiru skimame, musi byt dostato¢ne
velka, pretoze ¢im dlhSie simulacia bezi, tym presnejSie zmeriame charakteristiky siete.
Integro - diferencidlnu rovnicu, ktord popisuje hodnoverne tento proces, sa nam
zatial nepodarilo napisat. Podarilo sa nam vSak analyticky ukdzat, Ze zjednoduSena
verzia CD modelu vedie na hierarchicku a bezSkalovl Struktaru siete.

V zjednodusenej verzii CD modelu (nazvanej SCD modelom, simplified clustering
driven model) kazdy uzol prichadzajuci do siete sa do nej pripoji len dvoma hranami. Jedna
hrana sa pripoji k nejakému uzlu s v sieti a to s pravdepodobnostou imernou klasterizaénému
koeficientu starého uzla s (6.11, 6.12). Druha hrana sa pripoji ndhodne na niektory z uzlov
z najblizSieho susedstva uzla s. Pod najbliz§im susedstvom rozumieme také uzly, ktoré su
s uzlom s spojené hranou. Dve nové hrany, stary uzol, jeho sused a novy uzol a tieZ hrana
medzi starym uzlom a jeho susedom tak vytvaraja trojuholnik (obrazok 15) .

Akt reélnu situdciu by mohol takyto proces modelovat? Domnievam sa, Ze to moze
byt’, napriklad, vznik zaujmovych skupin. Predstavme si, ze existuje nejaké skupina turistov.
Turista, ktory sa chce k nej pripojit, najpravdepodobnejSie najde veduceho tejto skupiny,
¢loveka, ktory planuje vylety, popripade udrziava a aktualizuje stranku na internete. Novy
potencialny ¢len klubu kontaktuje tato kI'icovi osobu. KIucova osoba turistickej skupiny
obycCajne pozna vicsinu ¢lenov, ktori sa poviacsine tiez vzajomne poznaju. V jazyku sieti to
znamena, ze klIiCova osoba ma velky klasterizacny koeficient. Ked’ sa novy turista v klube

objavi, nadviaze kontakty aj s inymi ¢lenmi skupiny. Samozrejme, niektori z nich st ¢lenmi aj



inych turistickych klubov, popripade inych zdujmovych skupin (klastrov) a sprostretkuju tak

kontakt medzi r6znymi skupinami.
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Obrazok 14. Vizualizicia CD modelu. Horny obrazok predstavuje siet kde sa uzly pripajaju

spésobom (6.11), dolny obrazok spésobom (6.12). Obe siete maji sto uzlova m =3 .

Fakt, Ze v kazdom ¢asovom okamihu sa v sieti vytvori novy trojuholnik, je z hl'adiska

analytickych vypoctov vel'mi dolezity. Klasterizacny koeficient uzla s je dany vztahom

C(s)= els) (6.13)
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Obrazok 15. Sposob pripajania uzlov v SCD modeli. Za¢iname z malej siete o troch uzloch (Cierne
uzly a c¢iemne pIné hrany). Z nich kazdy ma klasterizacny koeficient rovny jednej. V nasledujucom
okamihu (¢z=1) pripojime uzol s indexom s=1, ktory prinesie dve nové hrany (m=2, tenka plna Ciara).
Pripojenie jednej hrany k uzlu i je riadené klasterizaciou, druha sa ndhodne pripoji do susedstva uzla i.

Takto proces pripajania uzlov pokracuje dale;j.

kde e(s) je pocet hran medzi susedmi uzla s a k(s) je stupei uzla s. Pretoze v SCD modeli
v kazdom kroku vznikne v sieti novy trojuholnik uzlov, pocet hran e(s) je dany rovnicou

e(s)=k(s)—1. Ak toto dosadime do (6.13), potom v SCD modeli plati

C(s)= 2 (6.14)

k(s)
Dalsia otazka, ktora si mozno polozit' znie: Co je v SCD procese najddleZitejsie pre
vznik bezSkalovej Struktiry v sieti? Je to pripajanie uzlov riadené klasterizaciou? Aby sme

odpovedali na tuto otdzku, zohl'adnime fakt (6.14) a vyrieSime BA model, v ktorom nie je

preferencia pripojenia hrany k uzlu s imerna &, ale k' :
ok(s,¢) B k(s,z)"
=- )
a I k(s,t)" ds
0

(6.15)

Riesenie tejto rovnice je [17]



k(s,r)= [2;[% loga][é):r, (6.16)

s a=2.964. Z Casti 4 tejto prace vieme, ze rieSenie (6.15) nevedie na taku distribuciu stupna
uzlov, ktord charakterizuje bezskalova siet. Pripajanie hran riadené klasterizaciou teda
nezodpoveda za bezskalova Struktaru vzniknutej siete. Toto mozno potvrdit’ numerickymi
simuladciami modifikovaného SCD modelu, v ktorom pripojenie prvej hrany nie je riadené
klasterizaciou, ale ju pripojime k uzlu s ndhodnym, alebo preferenénym spésobom. Druhu
hranu opit’ pripojime ndhodne na bezprostredné¢ho suseda uzla s. Numerické simulacie
ukazuju, Ze siet’ ostdva aj v takychto pripadoch bezskalovou.

Prec¢o? Odpoved’ je jednoduchd. Pripdjanie druhej hrany do susedstva uzla s je
v podstate skrytym preferenénym pripajanim, pretoze uzol s velkym stupiiom bude susedom
mnohym uzlom. Preto pravdepodobnost, ze sa k nemu druhé hrana pripoji je vicsia, ako pre
uzol s malym stupniom, ktory je susedom len malému poctu uzlov. Ako vieme z BA modelu,
preferencné pripéjanie je zdkladnym mechanizmom vzniku bezskéalovej Struktary sieti.

Treba si uvedomit’ aj d’alsi fakt. SCD model je vlastne ekvivalentny a mozno ho

transformovat na Viasquezov model sjednym surferom (v, =1) as jednotkovou
pravdepodobnost'ou zvySenia stupfia navStiveného uzla (g, =1). Nazvime tento variant

Vasquezovho modelu V modelom. Vo V modeli bludenie po sieti za¢ina skokom surfera na

nahodne zvoleny uzol. V nasledujuicom kroku s pravdepodobnostou ¢, sleduje hranu
incidentnu s tymto uzlom a s pravdepodobnostou 1—¢, sko¢i na novy, ndhodne vybrany

uzol. Distribticiu stupiia uzlov pre V model vypocitame z tejto rovnice pomerov [17]

ony

Py Ay = Aenyg, (6.17)

pricom (6.17) plati pre k#0 a A4, je pravdepodobnost’, Ze uzol so stupfiom k zvySi svoj

stupeii o jednotku. Pocet uzlov objavenych surferom za jednotku ¢asu je aj v tomto pripade

ON
—=v,. 6.18
5 Ve (6.18)
SCD model sa od V modelu lisi aj spésobom, akym sa doitho pridavaji nové hrany.
V najjednoduchsej verzii V modelu v kazdom kroku priddvame do siete bud’ jednu hranu,

alebo jednu hranu a jeden uzol. V SCD modeli v kazdom okamihu priddme dve hrany a jeden



uzol. Preto, aby sme mohli SCD model pretransformovat’ na V model, musime polozit

q, = % . NavySe vztah pre 4, (5.13) upravime tak, Ze zohl'adnime (6.14):

1 2
A =—|0-q,)—+q.Vv k]|. 6.19

k N[( qe)k<C> qe a :| ( )
V (6.19) <C> je priemerny klasterizaCny koeficient. Ak do (6.17) zavedieme predpoklad

n, = NP(k), kde P(k) je stacionarna pravdepodobnost’ toho, Ze uzol ma stupeir k, potom
v spojitej aproximacii dostaneme

oNP(k)  04,NP(k)

= . 6.20
ot ok (620)
Ked’ze P(k) nezavisi od ¢asu z rovnice (6.18) a (6.20) dostaneme
2(1-9,)
vo(l+g )+ =5 %
k*(C
95@)=P@) ) (6.21)
o (0.-1) 2 —quv.k
e k<C> e a
Riesenie tejto rovnice vedie na
P@)mk”,y:1+lg (6.22)
q.

¢o je vsulade aj s Vasquezovym rieSenim a potvrdzuje tak fakt, Ze pripdjanie hran riadené
klasterizaciou nie je z hl'adiska bezskalovej Struktury rozhodujuce.

Klasteriza¢ny koeficient v SCD modeli je dany vztahom (6.14). Preto pre SCD model
v rovnici (5.2) Skélovaci exponent 6 =1 . Ak vieme, ze pre SCD model ¢, =%, potom

Skalovaci exponent distribucie stupnia uzlov y =3 (6.22). Tieto vysledky potvrdila aj
numericka simulacia SCD procesu (obrazok 16).

Vratme sa teraz ku vSeobecnému CD modelu, kde v kazdom kroku pribada do
systému viacej hran (m > 2 ). Numerické simulacie CD modelu ukazuju, ze zakladny rozdiel
medzi CD modelom a Vasquezovym modelom je ten, Zze ¥ vo Vasquézovom modeli zavisi od

parametra g,. V CD modeli y =3 pre vSetky hodnoty m. Toto plati aj pre modely, kde

pripojenie prvej novej hrany je nahodné, popripade preferencné.
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Obrazok 16. Namerané distribucie stupna uzlov a klasterizaénych koeficientov v SCD modeli,

v ktorom m =2 a pocet uzlov N =20000.

Pre vSeobecny CD model sme zmerali aj iné charakteristiky [17] Zmerali sme
napriklad priemerny klasterizany koeficient a separaciu uzlov. Priemerny klasterizacny
koeficient je konStantny asiet ma aj vlastnosti siete malého sveta, pretoZe priemerna
najkratSia vzdialenost’ medzi uzlami rastie s po¢tom uzlov siete logaritmicky. Ked menime
pocet pripdjanych hran m, numerickéd simulacia CD modelu potvrdzuje nezavislost’ exponentu

y od m, zatial’ Co exponent ¢ riadiaci distribuciu priemernych klasterizacnych koeficientov
uzla stupiia k sa's m meni ako § c m ™, kde f=0.1.

Skonstatujme na zaver niekol’ko faktov. V préci [17] suhlasime s Vasquézom [16], Ze
spdsob pripojenia prvej hrany nie je rozhodujuci pre vyslednt topoldgiu siete. To, Co je

naozaj dolezité, st lokalne pravidld, teda fakt, ze m—1 hran sa vzdy nahodne pripoji do



susedstva vybraného uzla. Proces rastu siete, kde sa uplatiiuju takéto lokalne pravidla, vedie
na bezSkéalovu a zaroven hierarchicku topoldgiu siete. Na bezskalovua preto, ze lokalne efekty
zabezpecuju virtualne preferencné pripajanie novych hran. Ak ma totiz nejaky uzol velky
stupen, potom ma vel'a susedov a pravdepodobnost’, Zze jedna z m —1 novych hran sa pripoji
prave k nemu je o to vyssia. Na hierarchicku Strukturu vedie takyto proces preto, ze v kazdom
kroku sa do siete pripdja viac menej pravidelny utvar, pozostavajuci z jedného nového
vrcholu a m novych hran. Ako sme videli v SCD modeli, je tymto Gtvarom trojuholnik uzlov a
hrén. V tomto SCD model pripomina Ravasz — Barabdsi model hierarchickej siete [15].
Mozeme teda skonStatovat, Ze sme nasli proces rastu siete, ktory je prirodzeny a v ktorom

lokalne procesy dominuju a vedd k tomu, Ze siet’ je zdroven bezskéalova a hierarchicka.

6.4 Siete a umela inteligencia

Umeld inteligencia je informatickd vednd disciplina, ktord hojne vyuziva poznatky
z inych vednych oblasti. Jednou z tloh, ktoré si umela inteligencia kladie, je prinutit’ stroje
k tomu, aby ich spravanie pripominalo inteligentné spravanie cloveka. Takéto stroje — roboty
potom moézu nahradit’ ¢loveka vSade tam, kde je to nebezpecné, popripade pre l'udsky
organizmus prili§ namahavé. Na druhej strane, umeld inteligencia si kladie aj iné ciele, ciele
blizke tym, ktorymi sa zaoberaji kognitivne vedy. Jej ulohou je aj lepSie porozumiet, o to
vlastne inteligencia je. Ako sa inteligentné zivé tvory ucia? Ako sa rozhoduju, ako konaju
a Co toto konanie ovplyviuje ?

Teoria sieti moze byt ndpomocna umelej inteligencii pri oboch jej hlavnych ulohéch.
Dost’ preto prekvapuje, Ze sa v umelej inteligencii doteraz prakticky nevyuZiva. Komunikaéné
siete robotov by mali byt navrhnuté tak, aby zabezpecovali bezproblémové Sirenie signalu. Aj
komunikac¢na siet’ inych umelointeligentnych agentov (nech je to hoci aj ad hoc siet’) by mala
spiiat’ isté parametre, aby komunikdcia netrpela slabym signalom, velkym Sumom
a podobnymi nedostatkami. Umelej inteligencii by mohla pomdct’ aj znalost’ toho, Ze ista
sietova Struktara odolava lepSie ndhodnym porucham, ina zasa lepSie cielenym Gtokom [33].

Porozumenie l'udskej inteligencii je uzko spojené s vyskumom mozgu. Pretoze mozog
je vo svojej podstate sietou poprepdjanych neurdnov, spojitost teorie sieti a umelej
inteligencie sa tu priam ponuka. Aj vyskum funkénych sieti mozgu modze pomoct
k porozumeniu kolektivneho sa spravania neurénov pri jeho ¢innosti.

Verim, ze nie je d’aleko doba, ked’ umeld inteligencia a tedria sieti ndjdu spolocnu rec

a obohatia nds o nové zaujimavé vysledky.



7. Perspektivy d’alSieho vyskumu

Dalsi vyskum sieti, tak ako doteraz, pdjde dvoma smermi: teoretickym a aplika¢nym.
V oblasti tedrie sieti sa, napriklad aj na nasej fakulte, pokracuje v Studiu hierarchickej
Struktary sieti. Nie su zaujimavé len mechanizmy, ktorymi hierarchicka Struktira v siet’ach
vznika, ale aj stabilita tejto Struktary. Do akej miery mozno porusit’ lokalne zakony pripajania
novych hran, aby sa hierarchicka Struktara zachovala? Je tento prechod pozvolny, alebo ma
charakter nahleho skoku? Co sa stane s bezskalovostou, ked’ sa narusi hierarchia? Toto vetko
si zaujimavé a aktualne otazky.

Dalsia vetva teoretického vyskumu povedie k tvorbe modelov, ktoré budu este lepsie
vystihovat’ vlastnosti redlnych sieti. Binarne siete pomaly treba nahradit’ komplikovanejSimi
modelmi, napriklad aj takymi, v ktorych kazdéa hrana existuje len s istou pravdepodobnostou.
Pre Sirenie signalov je dblezitd aj priepustnost’ hrany — tu sa teoria sieti dotyka perkolacnej
teorie. Prvé lastovicky v tomto smere vyskumu sa uz objavili [47].

Z hladiska praxe je dolezity aj vyskum ad hoc sieti. Vo vyskume mozgu bude
pokracovat’ skiumanie funkénych sieti a zavislosti ich Struktury od obtiaznosti kognitivnej
ulohy. Vyznamna je aj otazka ako funkEné siete mozgu stvisia s anatomickou Struktirou
mozgu. D4 sa odvodit’ ako bude funkénd siet’ vyzerat, ak pozndme anatomickt Struktiru
oblasti mozgu, zodpovednych za vnimanie dané¢ho typu signalu?

Teoria sieti zaCina pomaly prenikat aj do biologie. Skumaju sa rdzne typy
interakénych sieti [6] atento vyskum bude urCite pokracovat’ dalej aj v buducnosti.
Biologicky vyskum, podobne ako vyskum socidlnych sieti bude uzko spojeny s pokrokom
v teorii a s analyzou realistickejSich sietovych modelov.

Verim, Ze tento prehlad tedrie dynamickych sieti ukdzal Citatel'ovi krasu, ale aj uskalia
ich vyskumu. Ak sa Citatel' rozhodne prispiet’ k nemu svojim dielom, ucel tejto kapitoly bol
viac ako napneny.
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