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Abstrakt.  Kapitola pojednáva o teórii takých sietí, v ktorých sa počet uzlov  s časom mení.  

Nazývame ich  dynamickými sieťami. Vlastnosti a štruktúra dynamických sietí sa podobajú sieťam, 

ktoré  vytvárajú prirodzené  samoorganizované procesy (sociálne siete, www, internet), preto 

modelovanie dynamiky sietí je dôležité nielen z teoretickéhho, ale z aj z praktického hľadiska. V tejto 

práci  popisujem dynamiku základných modelov rastúcich sietí a  na základe matematickej analýzy 

jednotlivých modelov poukazujem na fakt, že konečná štruktúra siete veľmi závisí od spôsobu, akým 

sa sieť v čase mení. S dynamickými procesmi v sieti súvisí aj hierarchické usporiadanie uzlov. 

V ďalších častiach prezentujem modely, ktoré objasňujú ako môže teória  sietí prispieť k pochopeniu 

štruktúry sietí známych  z praxe. Poukážem tiež na to,  čo majú mnohé reálne  siete spoločné. V závere  

konkrétnejšie popíšem rôzne aplikácie teórie sietí a perspektívy ďalšieho výskumu.  

 

1. Úvodné poznámky 

      Informatik sa veľmi často potýka so sieťami tak v teórii, ako aj v praxi. Určite vyhľadáva 

informácie na internetovej sieti, alebo posiela maily. Možno má aj vlastnú www stránku, na 

ktorej prezentuje svoju prácu. Na nej môže, napríklad, umiestniť  odkazy na iné, preňho, 

alebo pre jeho spolupracovníkov zaujímavé stránky. Aj mnohé informatické teoretické 

problémy súvisia so sieťami. Patrí k nim teória šírenia signálov po sieťach, kde sa zaujímame, 

ako musia byť rozmiestnené prijímače, vysielače alebo zosilňovače signálu, aby to, na jednej 

strane, nebolo neekonomické, ale aby sme zároveň zachovali dostatočnú kvalitu signálu. 

Môže nás tiež zaujímať odolnosť interentovej,  alebo aj iných sietí, voči náhodným poruchám, 

či cieleným útokom. Možno, napríklad, potrebujeme vedieť, aká štruktúra siete je voči 

poruchám a útokom najodolnejšia.  



           So sieťami sa však nestretávajú len informatici. Inžinieri spravujú cestné siete, 

elektrické siete, či siete dopravných komunikácií a tiež ich potrebujú optimalizovať tak, aby 

plnili svoju úlohu, ale zároveň neboli predimenzované. Cestná sieť má byť dostatočne hustá, 

aby pokryla potreby dopravy, ale na druhej strane by pre krajinu nemala byť ekologickou 

a ekonomickou záťažou. Telefónna sieť a mobilná sieť má umožňovať komunikáciu medzi 

ľuďmi, má byť aj dostatočne stabilná a spoľahlivá, ale zároveň nie príliš drahá.  

           Vidíme, že celý civilizovaný svet je nejakým spôsobom „zosieťovaný“. Preto sa 

v posledných desiatich rokoch začali o siete zaujímať aj vedci z iných, od informatiky 

vzdialených, vedných odborov [1, 2, 3, 4]. Biológovia aj informatici už niekoľko desaťročí 

skúmajú neurónovú sieť mozgu [4]. Donedávna nebolo veľa možností skúmať, do akej miery 

procesy myslenia súvisia s tým, ako sú neuróny pospájané.  Nevedelo sa ako sieťová štruktúra 

mozgu ovplyvňuje jeho schopnosti. Neboli na to nástroje a ani vhodná teória. S rozvojom 

teórie dynamických sietí, sa množili pokusy študovať mozog novými metódami. Pomohli 

tomu aj také neinvazívne techniky ako je funkčná magnetická rezonancia (fmri) [5]. 

Skúmajú sa aj iné biologické siete, ako napríklad interakčné siete proteínov [6] a tiež, v 

spolupráci so psychológmi a kognitívnymi vedcami, aj sociálne siete a jazykové siete [2, 7, 

8]. Pozornosť, nielen z teoretického, ale aj praktického hľadiska, pútajú ad hoc siete. To sú 

také, ktoré sa vytvárajú v ohraničenom čase a potom zanikajú. Patria k nim napríklad funkčné 

siete mozgu [3].  Ich výskum je priamo závislý na  zdokonaľovaní zachytávania signálov 

mozgu pomocou funkčnej magnetickej rezonancie [5]. Signály z mozgu získané touto 

technikou  ukazujú, že ak mozog koná nejakú kognitívnu úlohu, niektoré oblasti mozgovej 

kôry pracujú synchrónne, aj keď možno nie sú priamo prepojené pomocou neurónov. Tieto 

tvoria takzvanú funkčnú sieť, ktorá má, ako sa ukazuje, vlastnosti podobné vlastnostiam iných 

prirodzenými procesmi vznikajúcich sietí [9, 10, 33].  

          Keďže matematickou reprezentáciou siete je graf, človek, ktorý sa chce vážne venovať 

teórii dynamických sietí, musí sa nutne potýkať s teóriou grafov [11]. Na druhej strane, sieť 

do ktorej pribúdajú alebo z nej ubúdajú uzly, je vlastne dynamickým systémom. Dynamické 

systémy študuje fyzika [12]. Matematicky ich možno popísať pomocou diferenčných, 

diferenciálnych, alebo dokonca integro – diferenciálnych rovníc. Preto, ak chceme robiť 

v teórii dynamických sietí seriózny výskum, musíme sa venovať aj spomenutým oblastiam 

matematiky a fyziky. 



           Mnoho praktických problémov možno vyriešiť pomocou modelov rastúcich sietí, ktoré 

sú vlastne integro – diferenciálnymi rovnicami. Toto zjednodušenie, totiž že uzly do siete 

hlavne pribúdajú a počet uzlov, ktoré sa zo siete strácajú je voči nim zanedbateľný, je 

z hľadiska praxe opodstatnené. Preto sa v tejto časti knihy budeme venovať hlavne rastúcim 

dynamickým sieťam. Rastúcou  sieťou je, napríklad, internet – o tom zrejme nikoho netreba 

osobitne presviedčať. Neustále do nej pribúdajú noví účastníci a ich počet ďaleko prevyšuje 

počet tých, ktorí sa od internetu odpoja. Ďalšie zjednodušenie, ktoré urobíme, je takéto: 

Predstavme si, že ak náhodne vyberieme dva uzly siete, hrana medzi nimi buď existuje, alebo 

neexistuje. Tieto siete nazývame binárnymi. Aj keď hovorím o zjednodušení, dúfam, že vás 

presvedčím, že aj výskum  binárnych sietí prináša zaujímavé problémy, ale aj otázky a 

praktické poznatky. 

          Celá práca je rozdelená takto:  V druhej časti sa budem venovať základným 

vlastnostiam  grafov. V tretej zasa popíšem reálne siete a ich vlastnosti a vo štvrtej časti,  na 

príklade základných modelov ukážem, ako vlastnosti sietí súvisia s ich dynamikou, teda so 

spôsobom rastu tej ktorej siete. Budeme sa zaoberať modelom s náhodným a preferenčným 

pripájaním uzlov a tiež modelom sietí so zrýchleným rastom. Podkapitola päť je venovaná 

niektorým lokálnym procesom, ktoré ovplyvňujú vlastnosti a štruktúru sietí a hierarchické 

usporiadanie uzlov.  V šiestej podkapitole pojednám o aplikáciách teórie sietí. Siedma časť 

poukáže na to, aké sú perspektívy a možnosti ďalšieho výskumu.  

 

2. Krátky pohľad do teórie grafov 

      V tejto časti krátko nahliadneme do matematickej teórie grafov. Zavediem v nej niekoľko 

nevyhnutných základných pojmov a vzťahov. Teória grafov je v súčasnosti veľmi rozvinutou 

oblasťou matematiky, a preto toto pojednanie v žiadnom prípade nemôže byť vyčerpávajúce. 

Tých, ktorí by potrebovali obsiahlejšie informácie, odkazujem na bohatú literatúru z teórie 

grafov, napríklad na výbornú knihu Introduction to Graph Theory od D. B. Westa [11]. 

       Graf  G je definovaný pomocou dvoch množín; množiny vrcholov V(G) a množiny hrán 

E(G). Pokiaľ nebude povedané inak, budeme tieto množiny považovať za konečné. Prvkami 

množiny V(G) sú vrcholy grafu (resp. identifikátory vrcholov grafu), prvkami množiny E(G) 

sú usporiadané dvojice. Ak je hrana grafu orientovaná, potom prvým členom dvojice je 

identifikátor vrcholu, z ktorého hrana vychádza, druhým členom identifikátor vrcholu, do 



ktorého hrana vchádza. Takéto hrany, s fixným poradím vrcholov v usporiadanej dvojici,  

nazývame orientované. Ak neexistuje na hrane preferovaný smer, na poradí vrcholov 

v usporiadanej dvojici nezáleží. Vrcholy zvykneme nazývať aj uzlami grafu. 

        Na  obrázku 1a vidíme graf. Má jednu slučku, teda hranu, ktorá začína aj končí na tom 

istom uzle. Ak dva uzly spája viacero hrán, hovoríme o viacnásobnej hrane. Prerušovanou 

kružnicou je označený jeden z podgrafov nášho grafu. Jedna z hrán  grafu na obrázku 1 je 

orientovaná, jej orientácia je označená šipkou.  

a) .  

b)  

Obrázok 1.  Graf a jeho prvky.  a) Graf so slučkou a násobnou hranou. b) Jednoduchý graf. 

          Pod pojmom jednoduchý graf rozumieme taký graf, ktorý nemá viacnásobné hrany ani 

žiadne slučky. Príklad jednoduchého grafu je na obrázku 1b. Vznikol z grafu na obrázku 1a 

vymazaním násobných hrán a slučiek. 



         Na obrázku 2 vidíme ďalší príklad orientovaného grafu, kde všetky hrany majú 

preferovaný smer. Každému uzlu možno priradiť jeho stupeň. Stupeň uzla x, 
xk , predstavuje 

súčet počtu hrán, ktoré do uzla vchádzajú, alebo z neho vychádzajú. Takéto hrany nazývame 

incidentnými s vrcholom x. V orientovanom grafe rozoznávame počet hrán in

xk , ktoré do uzla 

x vchádzajú a počet hrán out

xk , ktoré z uzla x vychádzajú. Potom stupeň uzla x , 
xk  , je daný 

súčtom
 

 out

x

in

xx kkk += . V ďalšom texte, pokiaľ nebude povedané inak, uvažujeme len 

neorientované grafy. 

 

Obrázok 2.  Orientovaný graf. Uzol x má stupeň 2,1 == out

x

in

x kk  
 
a teda 3=xk . 

          Pod bipartitným grafom rozumieme taký graf, ktorého množinu uzlov V(G) môžeme 

rozdeliť na dve dizjunktné podmnožiny (partície) ( ) ( )GVGV 21 ,  kde ( ) ( ) ( )GVGVGV 21 =  je 

zjednotením oboch množín. Hrany existujú len medzi uzlami z rôznych partícií (obrázok 3). 

Ako príklad môže slúžiť graf, v ktorom v jednej partícii sú ľudia a v druhej partícii ich 

zamestnania. Hrana existuje vtedy, ak človek mal v živote dané zamestnanie.    

 



Obrázok 3.  Bipartitný graf. Hrany medzi uzlami existujú len vtady ak uzly patria do dvoch rôznych 

podmnožín množiny vrcholov V(G). 

          Pod pojmom kompletný graf, rozumieme taký neorientovaný jednoduchý graf, kde sú 

uzly poprepájané hranamy spôsobom každý s každým. Dva jednoduché neorientované grafy 

nazývame komplementárnymi, ak majú rovnaký počet uzlov a po stotožnení uzlov ich hrany 

vytvoria kompletný graf.  Pod komplementom grafu G rozumieme teda taký graf G´, ktorý 

má rovnaký počet uzlov ako graf G a je komplementárny ku G.   

           Matematicky možno grafy reprezentovať rôznymi spôsobmi, napríklad pomocou 

matice susednosti, alebo pomocou incidenčnej matice. Riadky aj stĺpce matice susednosti 

označujú vrcholy a prvky matice susednosti reprezentujú počty hrán medzi jednotlivými 

dvojicami vrcholov. Riadky incidenčnej matice označujú uzly a stĺpce hrany. Prvok matice 

má hodnotu 1 ak je daná hrana incidentná s daným uzlom (teda v prípade orientovaných 

grafov z neho vychádza, alebo doňho vchádza) a majú hodnotu 0 v opačnom prípade. Matica 

susednosti a incidenčná matica pre graf na obrázku 2 je: 
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          Samozrejme, sú možné aj iné reprezentácie, ktoré vyzdvihujú ďalšie vlastnosti grafov. 

Tak napríklad, ak odhliadneme od počtu hrán medzi dvoma uzlami v matici susednosti 

a upravíme prvky matice tak, aby  boli rovné jednej ak existuje hrana medzi dvoma uzlami 

a nule ak nie, dostaneme binárnu maticu susednosti.  Ak od matice susednosti odčítame 

diagonálnu maticu, ktorej diagonálne prvky obsahujú stupeň príslušného uzla, získame 

Laplaceovu maticu. Jej riadky a stĺpce sa sumujú na nulu a obsahuje informácie jednak o tom 

ako sú rozložené hrany v grafe, jednak o tom, ako dobre sú zapojené jednotlivé vrcholy. Ak sa 

chceme niečo dozvedieť o štruktúre najkratších vzdialeností medzi uzlami, môžeme graf 

reprezentovať pomocou matice vzdialeností. Riadky a stĺpce tejto matice sú vrcholy a prvky  

matice predstavujú najmenší počet hrán, ktorý treba prejsť aby sme sa od jedného vrcholu 

dostali k inému. Ak graf nie je orientovaný, táto matica je symetrická.  

          Dva neorientované grafy G a H sú izomorfné, ak dokážeme nájsť také vzájomne 

jednoznačné zobrazenie, ktoré zobrazí všetky uzly grafu G na uzly grafu H a všetky hrany  

grafu G na hrany grafu H. Platí, že hrana medzi dvoma vrcholmi v grafe G existuje vtedy a 



len vtedy, keď existuje aj medzi ich obrazmi v H. Matice  susednosti oboch grafov sú 

rovnaké, ak upravíme číslovanie vrcholov. Graf sa nazýva samokomplementárnym, ak je 

izomorfný so svojím komplementom. Grafy môžeme zaraďovať do izomorfných tried, 

ktorými sú, napríklad,  cesty na n uzloch, cykly na n uzloch a podobne. Počet jednoduchých 

grafov, ktoré môžeme vytvoriť na množine n rozlíšených uzlov je daný vzťahom 
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         Od jedného uzlu grafu k inému sa pohybujeme po hranách. Ak majú orientáciu, pohyb 

je možný len v jej smere, ak nie, môžeme sa pohybovať oboma smermi. Sled je taký pohyb po 

grafe, ktorý môže opakovať hrany aj vrcholy, zatiaľ čo pri ťahu  sa hrany opakovať nesmú. 

Eulerovský ťah prejde cez všetky hrany práve raz. Ak graf má cestu, potom sa musíme po 

hranách pohybovať tak, aby sa ani vrcholy ani hrany neopakovali. Neorientovaný graf je 

súvislý, ak existuje cesta medzi každou dvojicou rozdielnych vrcholov. Známa Eulerova veta 

tvrdí, že súvislý graf má uzavretý eulerovský ťah (t.j. prvý a posledný vrchol ťahu je rovnaký) 

práve vtedy, keď všetky vrcholy sú párneho stupňa. Je tomu tak preto, lebo ak ťah neopakuje 

hrany, jednou hranou do vrcholu vchádzame a druhou z neho vychádzame.   Maximálny 

súvislý komponent grafu G je taký podgraf, ktorý je súvislý a nie je obsiahnutý v žiadnom 

inom súvislom podgrafe grafu G. 

          Stupeň uzla x, 
xk , je jednou zo základných veličín, ktoré v grafe meriame. 

Neorientovaný graf G je k – regulárny, ak stupne všetkých jeho uzlov sú rovnaké a majú 

hodnotu k. Keď sčítame stupne všetkých uzlov grafu zistíme, že  
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V rovnici (2.1) N je počet uzlov v grafe G a e označuje počet hrán.  Túto hodnotu dostaneme 

napríklad aj z Laplaceovej matice grafu, keď sčítame jej záporne vzaté diagonálne prvky. 

Často sa počíta priemerný stupeň uzla v grafe: 
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           Pod najkratšou cestou medzi dvoma uzlami grafu myslíme tú, ktorá prechádza 

najmenším počtom hrán. O tom, ako majú k sebe uzly „ďaleko“ vypovedá miera nazývaná 

priemernou vzdialenosťou, alebo separáciou uzlov v grafe. Pre veľké grafy sa separácia 



uzlov počíta ako priemerná hodnota najkratších vzdialeností pre náhodne volené dvojice 

uzlov.  

            O tom, ako dobre je prepojené okolie uzla x vypovedá jeho klasterizačný koeficient 

xC , ktorý je pomerom počtu skutočne existujúcich hrán medzi susedmi uzla x a počtu hrán, 

ktoré by medzi susedmi boli, keby susedstvo uzla x tvorilo kompletný graf: 
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V rovnici (2.3) 
xe  je počet skutočne existujúcich hrán medzi susedmi uzla x a 

xk  je stupeň 

uzla x a teda aj počet jeho susedov. Platí tiež, že 
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C celého grafu G je priemernou hodnotou klasterizačných koeficientov všetkých uzlov 
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kde N je celkový počet uzlov grafu a 
iC  je klasterizačný koeficient uzla i daný vzťahom (2.3).  

             Ak chceme štruktúru grafu popísať presnejšie, nevystačíme len s priemernými 

hodnotami ako sú klasterizačný koeficient C  (2.4) a priemerný stupeň uzla k  (2.2). Viacej 

nám o nej povie rozdelenie stupňa uzlov a  rozdelenie klasterizačných koeficientov. 

Rozdelenie stupňa uzlov je funkcia, ktorá opisuje, ako sa normovaný počet uzlov majúcich 

stupeň k, mení s hodnotou k. Môže napríklad vyzerať tak, ako na obrázku 4, alebo napríklad 

aj tak, ako na obrázku 9. Podobne rozdelenie klasterizačných koeficientov je funkcia, ktorá 

opisuje, ako sa priemerný klasterizačný koeficient 
kC  uzlov majúcich stupeň k mení 

s veličinou k. Neskôr uvidíme, že obe tieto distribúcie  veľmi úzko súvisia s dynamikou 

a štruktúrou siete. 

           Dôležitým pojmom v teórii grafov je náhodný graf. Prielom do teórie náhodných 

grafov urobili Erdos a Rényi a svoje výsledky zverejnili v známej práci On random graphs 

[13]. Erdos a Rényi v práci definujú dva modely náhodných grafov. Nazvime ich model 

A a model B.  



            V modeli A máme daný počet uzlov N a definovanú prevdepodobnosť p, že  zvolená 

dvojica uzlov je spojená hranou. Každý graf o e hranách sa vyskytuje s pravdepodobnosťou 
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−= 21 . Náhodný graf typu B má určený počet uzlov N  a počet hrán  e,  ktorými 

 

Obrázok 4.  Rozdelenie stupňa uzlov v grafe. Na osi x je stupeň uzla a na osi y počet uzlov, ktoré 

majú stupeň k normovaný na celkový počet uzlov grafu. Zobrazujeme v dvojitej logaritmickej škále, 

teda v lineárnej časti sa distribúcia správa podľa vzťahu ( ) − kkP  . 

sú uzly náhodne poprepájané. Oba modely majú v limite veľkého počtu uzlov rovnaké 

vlastnosti, ak  pravdepodobnosť 
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N
ep .  

          Podľa Erdosa a Rényiho [13] takmer každý graf má nejakú vlastnosť Q, ak 

pravdepodobnosť mať túto vlastnosť sa blíži k jednej s rastúcim početom uzlov grafu.   

           Nie je účelom tejto práce rozoberať vlastnosti náhodných grafov. Záujemcov 

odkazujem na ďalšiu literatúru [11, 13]. Pre naše potreby je dôležité vedieť, že pre značný 

rozsah hodnôt pravdepodobnosti p distribúcia stupňa uzlov náhodného grafu má tvar funkcie 

s peakom (Poissonovo rozdelenie) (viď. obrázok 9). Znamená to, že v náhodných grafoch 

máme mnoho uzlov majúcich stupeň v úzkom okolí maxima distribučnej funkcie 

a pravdepodobnosť mať uzol s väčším alebo menším stupňom so vzdialenosťou od tohto 

typického stupňa, definovaného maximom rozdelenia, rýchlo klesá. Klasterizačný koeficient 

v náhodnom grafe je  
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ak počet uzlov N je veľký. V takom prípade priemernú  vzdialenosť môžeme vypočítať ako  
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V  rovniciach (2.5) a (2.6) N je počet uzlov a k  je priemerný stupeň uzla grafu.  Z (2.5) 

vidíme, že pre veľký počet uzlov sa klasterizačný koeficient v náhodnom grafe blíži k nule. 

Ďalej z rovnice (2.6) možno usúdiť, že separácia vrcholov rastie s počtom vrcholov grafu len 

pomaly, logaritmicky. Náhodný graf je teda taký graf, v ktorom majú  uzly  k sebe pomerne 

blízko.  

        Nie všetky grafy však majú také isté vlastnosti ako náhodné grafy. Ak graf vzniká 

procesom, ktorý navrhli Watts a Newman [14], potom sa  jeho klasterizačný koeficient 

nebude s rastúcim  počtom uzlov blížiť k nule, aj keď priemerná  vzdialenosť medzi uzlami 

bude rásť s počtom uzlov logaritmicky, tak ako v náhodných grafoch. Takéto siete nazývame 

sieťami malého sveta. Charakterizuje ich pomerne veľký klasterizačný koeficient 

kombinovaný s malou separáciou uzlov. Akú majú siete malého sveta štruktúru ukážeme na 

Newmanovom a Wattsovom modeli [1, 14] (obrázok 5).  

         Predstavme si, že máme retiazku vrcholov, pozostávajúcu z veľkého množstva vrcholov, 

1N . Každý vrchol je hranami priamo spojený so štyrmi najbližšími susedmi (obrázok 5a). 

Konce retiazky spojíme (vytvoríme tak periodické hraničné  podmienky). Potom  postupne 

každú  z   hrán s  istou  pravdepodobnosťou   prepojíme   tak, že odpojíme   jeden  jej    koniec  

 

 



Obrázok 5. Štruktúra sietí malého sveta. a)  Sieť s pravidelnou štruktúrou, kde klasterizačný 

koeficient 
2

1
=C  a priemerná vzdialenosť rastie s rastúcim počtom uzlov ako NL  . b) Štruktúra 

siete malého sveta. Vďaka náhodným krátkym spojeniam sa radikálne skracuje separácia uzlov 

( ( )NL ln ) ale, ak krátkych spojení je relatívne málo, lokálna štruktúra siete ostáva prakticky 

neporušená  (
2

1
C ). 

a zapojíme ho na náhodne vybraný uzol (obrázok  5b). Ak je táto pravdepodobnosť 

presmerovania hrany veľmi malá, pre konečný počet uzlov nemusíme dostať žiadne náhodné 

krátke spojenie. Ak sa blíži k jednej, potom temer každá hrana v sieti je náhodne 

presmerovaná a dostaneme náhodný graf. Niekde medzi týmito dvoma krajnosťami sa však 

nachádza oblasť malého sveta, kde pár náhodných krátkych spojení zabezpečí malú separáciu 

uzlov, ale nenaruší príliš pravidelnú sieťovú štruktúru. Siete malého sveta tak stoja na 

pomedzí medzi pravidelnými, mriežkovými grafmi a náhodnými grafmi [1, 14].  

           Ak  má  sieť  takú  distribúciu stupňa  uzlov ako na obrázku 4,  potom vlastne  do 

veľkej miery platí,  že 

                                                              ( ) − kkP  .                                                             (2.7) 

Exponent   sa nazýva škálovacím exponentom distribúcie stupňa uzlov. Sieť s distribúciou 

stupňa uzlov typu (2.7) nazývame bezškálovou, pretože na rozdiel od náhodných grafov 

(obrázok  9), v nej neexistuje žiadna význačná škála, žiaden typický stupeň uzla. Jediná škála 

je daná konečnosťou počtu uzlov a hrán v sieti, teda veľkosťou siete.  

          Reálne siete mávajú veľmi často bezškálovú štruktúru. Zároveň v nich, spolu 

s bezškálovou štruktúrou, často pozorujeme aj isté hiererchické usporiadanie uzlov. Ako sa 

toto usporiadanie prejavuje na merateľných vlastnostiach siete? O hierarchii v sieťach budeme 

podrobnejšie hovoriť neskôr. Študovali ju, okrem iných, aj autori Ravasz a Barabási [15], 

Vásquez [16] a Náther, Markošová a Rudolf  [17]. Z týchto prác vyplýva, že hierarchické 

usporiadanie uzlov sa odzrkadľuje v mocninnej distribúcii priemerných klasterizačných 

koeficientov uzlov majúcich istý stupeň k 

                                                             ( ) − kkC                                                                (2.8) 

kde  je nový škálovací exponent.  



             Často pozorovaná kombinácia bezškálovosti a hierarchickej organizácie v reálnych 

sieťach prirodzene vedie k otázke, či existujú jednoduché, v prírode pozorovateľné procesy, 

ktoré by v konečnom dôsledku viedli k takýmto vlastnostiam. V ďalších častiach  ukážeme, 

že takéto procesy skutočne existujú. 

 

3. Reálne siete a ich vlastnosti 

       So sieťami sa človek súčasnosti potýka celý život. Máme svoje siete sociálnych 

kontaktov,  denne používame internet, mobilnú a telefónnu sieť, premiestňujeme sa pomocou 

siete ciest, železníc a leteckých trás a myslíme pomocou neurónovej siete nášho mozgu. 

Mnohí z nás sú napojení na Facebook, poprípade majú stránku na www sieti. Preto štúdium 

sietí nie je samoúčelné. Ako sa vlastnosti sietí menia s časom, ako sú siete odolné voči 

poruchám, ako dobre sa pomocou sietí šíria signály, ako dynamika sietí ovplyvňuje ich 

štruktúru, aké procesy v sieťach vedú k tým ktorým žiadúcim, či nežiadúcim vlastnostiam, 

o tom všetkom je užitočné mať predstavu skôr, ako nejakú sieť začneme vytvárať. Okolo seba 

však pozorujeme siete, ktoré vytvorila sama príroda. Jedna z nich, neurónová sieť mozgu, 

pracuje v našich hlavách. Ako si vlastne príroda poradila? Ako vytvorila siete optimálnych 

vlastností? V tejto časti preskúmame niektoré  zo sietí, ktoré  vznikli viac menej samočinne, 

bez predošlého plánu, len  procesom samoorganizácie. 

 

3.1.     Internet 

           V roku 1999 Faloutsos  a jeho spolupracovníci merali vlastnosti internetovej siete [18]. 

V tom čase bola veľmi aktuálna otázka  optimalizácie štruktúry internetu tak, aby 

komunikácia bola čo najefektívnejšia. Pokusy umelými zásahmi optimalizovať internet neboli 

príliš úspešné, pretože sa mlčky predpokladalo, že internet je vlastne náhodným grafom. 

Faloutsos a jeho kolegovia prví ukázali, že internet je bezškálovou sieťou typu (2.7) a že 

vlastnosti internetovej siete sa tak výrazne líšia od vlastností v tom čase populárnych 

náhodných grafov. Neskôr sa tiež zistilo, že takáto bezškálová štruktúra dobre odoláva 

náhodným poruchám, ale je citlivá na cielené útoky smerované na uzly s veľkým stupňom 

[33]. Objav Faloutsosovho tímu jednak vysvetlil neúspechy, ale aj otvoril nové otázky. Týkali 

sa hlavne procesov, ktorými internet rastie a ich dôsledku na jeho celkovú štruktúru.  Viacej 

svetla do týchto otázok vniesla práca Yooka, Jeonga a Barabásiho [19]. 

          Títo traja autori experimentálne študovali procesy rastu internetovej siete.  Internet je na 

najnižšej úrovni rozlíšenia sieť  uzlov - rootrov spojených linkami. Uzly sú rozmiestnené na 



dvojrozmernom povrchu zemegule tak, že vytvárajú fraktálnu štruktúru (s fraktálnou 

dimenziou 5.1=fD ), ktorá silne koreluje s hustotou svetovej populácie. Merania Yooka, 

Jeonga a Barabásiho ukázali, že internet rastie inkrementálne, a jeho štruktúra je určená 

dvoma základnými kompetitívnymi procesmi: 

1.  Pravdepodobnosť  linky  medzi  dvoma  uzlami  klesá  lineárne  s fyzickou   vzdialenosťou   

     medzi nimi. 

2.  Pravdepodobnosť, že sa   nový uzol pripojí k starému je priamo úmerná stupňu tohto uzla  

    (preferenčné pripájanie). 

Prvý proces je daný tým, že noví užívatelia internetu majú tendenciu pripojiť sa k čo 

najbližšiemu uzlu, pretože je to najjednoduchšie a aj najekonomickejšie. Druhý proces, ako 

ukážeme v ďalšom, je zodpovedný za bezškálovú štruktúru internetovej siete. Teda 

pravdepodobnosť, že sa nový uzol pripojí k starej sieti je daná takýmto vzťahom 
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kde jk  je stupeň uzla j a ijd  je vzdialenosť medzi uzlom i a j.  a   sú preddefinované 

exponenty, ktoré riadia silu preferenčného pripájania a vplyv vzdialenosti. Merania ukazujú, 

že pre internetovú sieť platí 1,1 ==  . Ak meníme tieto exponenty, alebo meníme 

fraktálnu dimenziu priestoru rozmiestnenia uzlov, potom je topologická štruktúra siete iná, 

ako skutočná bezškálová štruktúra internetu. Internet tak zaberá isté výnimočné postavenie 

v priestore parametrov ( )
fD,,  . 

       Výskum internetu stále pokračuje a prináša nové zaujímavé výsledky. Okrem internetovej 

sieti na úrovni rootrov  sa intenzívne študuje internetová sieť na doménovej úrovni . Niekoľko 

prác je venovaných aj www sieti, kde jednotlivé www stránky tvoria uzly a hrana medzi 

uzlami existuje, ak na jednej stránke je hypertextový odkaz na inú stránku [1, 33, 35]. Takejto 

sieti sa budeme podrobnejšie venovať neskôr. 

 

3.2.     Siete v biológii 

           Výskumy v poslednej dobe potvrdzujú, že aj biologické siete sú často bezškálové, majú 

vlastnosť sietí malého sveta, poprípade hierarchicky zoskupené uzly. Ako príklad môžu slúžiť 

metabolické siete [20], siete proteínových interakcií [6] , poprípade siete potravinových 

reťazcov [21]. Napríklad proteínové interakčné siete sú vytvárané vo vnútri každej bunky.  

Uzlami sú jednotlivé proteíny a hrana existuje vtedy, keď dva proteíny fyzicky interagujú. 



V metabolických sieťach uzly (metabolity) sú spojené hranou vtedy, keď sú buď substrátmi 

potrebnými k nejakej metabolickej reakcii,  alebo produktami tej istej metabolickej reakcie.   

           Hierarchická organizácia uzlov sa študovala najmä v metabolických reťazcoch. Hlavne 

tieto siete sú príkladom biologických bezškálových a hierarchicky organizovaných sietí, 

ktorých štatistické miery spĺňajú zákony (2.7) a (2.8) [22, 23]. Navyše sú aj sieťami malého 

sveta. 

           Noort, Snel a Huynen [24] študovali siete génov na príklade Saccharomyces 

cerevisiae. V tejto sieti gény sú uzlami a hrana sa medzi nimi kladie vtedy, ak sú dva gény 

koregulované. Autori  ukázali, že takéto siete majú charakter siete malého sveta a sú zároveň 

bezškálové. Či v danej sieti existuje nejaká hierarchia, autori neskúmali. 

           V metabolických, ale aj iných biologických sieťach však nejde len o ich topologické 

vlastnosti, ale hlavne o to, aké majú tie ktoré interakcie (hrany) význam. Model biologickej 

siete musí teda počítať s tým, že nie každá hrana má rovnakú váhu, čo celú situáciu veľmi 

komplikuje. Nie je to tak dávno, čo sa študujú aj modely sietí s váhovanými hranami [25, 47]. 

Študujú sa však najmä numerickými metódami, pretože analytické výpočty v takýchto sieťach 

sú omnoho komplikovanejšie, ako v jednoduchších  binárnych sieťach. 

 

3.3.     Funkčné siete mozgu  

           Funkčná sieť mozgu je príkladom ad hoc siete. Iným príkladom ad hoc siete  je aj  

mobilná telefónna sieť. V mobilnej telefónnej sieti sú uzlami  ľudia a hrana medzi nimi je 

prítomná len vtedy, keď dvaja ľudia spolu práve telefonujú pomocou mobilného telefónu. Ad 

hoc sieť, ako napríklad funkčná sieť mozgu, alebo mobilná telefónna sieť, sa tak v čase 

neustále mení a za stabilnú ju možno považovať len na krátku dobu. Funkčnú sieť mozgu 

možno skúmať len vtedy, keď je mozog zaujatý plnením nejakej kognitívnej úlohy. Štúdium 

funkčných sietí mozgu  umožnil  až s pokrok neinvazívnych metód zobrazovania mozgu in 

vivo. Jednou z takých metód je v úvode spomenutá metóda funkčnej magnetickej rezonancie 

[5].  

           Funkčná magnetická rezonancia využíva zmeny pomerov okysličenej a neokysličenej 

krvi (BOLD meóda) a tiež fakt, že prietok krvi tými oblasťami mozgu, ktoré sú pri plnení 

danej kognitívnej úlohy aktivované, je merateľne zvýšený. Zvýšenie je úmerné intenzite 

aktivity (metóda perfúzie). Scanovanie mozgu pomocou funkčnej magnetickej rezonancie 

nám pomôže pochopiť obrázok 6. Snímaná osoba leží v akomsi tuneli, v ktorom má 

k dispozícii mikrofón a slúchadlá. Do slúchadiel dostáva pokyny od experimentátora, alebo 

iné signály nevyhnutné k tomu, aby vykonávala dopredu dohodnutú kognitívnu úlohu. Tou 



úlohou môže byť, napríklad, opakovanie slov v neznámom jazyku, preklad viet, počúvanie 

hudby, alebo trebárs aj niečo úplne jednoduché, ako rytmický pohyb prstami jednej, či druhej 

ruky. Signál sa sníma on line a pomocou vhodného softvéru sa premieta ako séria rezov 

mozgom na monitor experimentátora sediaceho v druhej miestnosti.  

            Experimentátor môže tak priamo sledovať ktoré časti mozgu počas danej kognitívnej 

úlohy pracujú intenzívne, ktoré menej a ktoré vôbec nie. Všetky vrstvy mozgu sa oscanujú v 

priebehu zhruba dvoch sekúnd. Dáta sa uchovávajú a potom rôznym spôsobom spracúvajú. 

Pri predspracovaní sa odstránia irelevantné signály (napr. tie, ktoré produkuje biela hmota 

mozgová) a časovo sa zosynchronizujú tak, aby sme signály zo všetkých vrstiev mohli 

 

 

Obrázok 6.  Schéma usporiadania pri funkčnej magnetickej rezonancii. Mozog sa scanuje po 

vrstvách, ktoré majú hrúbku niekoľko milimetrov. V každej vrstve sa sníma fmri signál s rozlíšením 3 

mm. Rozlíšenie predstavuje veľkosť jedného voxelu, jeho rozmery môžu byť, napríklad, 3 x 3 x 6 mm, 

ak vzdialenosť medzi snímanými vrstvami je práve 6 milimetrov. 

 

 považovať za zosnímané v tom istom časovom okamihu. Predspracované dáta sa  potom 

uchovávajú  vo forme trojrozmernej matice voxelových signálov a neskôr používajú na 

riešenie rôznych výskumných úloh a otázok.  

Veľkosť matice 

voxelov, 64 x 64. 

Rozmery jedného 

voxelu: 3 x 3 x 6 

mm 

Rozlíšenie 

3mm  

Hrúbka vrstvy: 

6mm 



           Jedným zo spôsobov spracovania fmri dát je aj vytváranie funkčných sietí mozgu. Prví 

sa o to pokúsil tým Danteho Chialva zo Španielska a USA [3, 26]. Predpokladali, že ľudský 

mozog je v podstate nelineárny dynamický systém, ktorý pracuje na hranici kritického stavu. 

Fyzikom je známe, že kritické stavy v nelineárnych dynamických systémoch sú doprevádzané 

sériou mocninných zákonov podobných rovniciam (2.7) a (2.8) [12]. Mocninné zákony 

znamenajú, že v systéme sú prítomné ďalekodosahové korelácie a to aj napriek tomu, že 

interakcie medzi elementami dynamického systému sú len krátkodosahové. Ako príklad môže 

slúžiť kopa piesku [27]. Ak prikladáme veľmi pomaly jednotlivé zrnká na kopu piesku, ktorá 

má malý sklon, väčšinou sa nič nedeje. Nanajvýš sa spustí malá lavínka, ktorá hneď zaniká. 

Ak však kopa rastie, pri istom kritickom sklone priloženie jediného zrnka piesku môže spustiť 

lavínu, ktorej veľkosť je porovnateľná s veľkosťou celej kopy. Veľkosť lavíny môžeme 

napríklad merať počtom zrniečok, ktoré sa počas trvania lavíny pohli. Keď urobíme 

distribúciu veľkosti lavín, teda na os x vynesieme veľkosť lavíny a na os y počet lavín danej 

veľkosti, dostaneme v logaritmickej škále obrázok podobný obrázku 4. Teda normovaný 

počet lavín závisí od veľkosti podľa mocninného vzťahu (2.7), kde  k teraz nepredstavuje 

stupeň uzla, ale  veľkosť lavíny a P(k) normovaný počet lavín veľkosti k..      

           Pohľad na mozog ako na dynamický systém je pohľadom zhora nadol. Vlastnosti 

mozgu, o ktorých experimentátori už dávno vedia, by sa mali objaviť ako dôsledok kritického 

správania sa nelineárneho dynamického systému. Napríklad by bolo zaujímavé  sledovať, 

prečo neuróny pri plnení kognitívnych úloh pracujú synchronizovane a ako sa z jednotlivých 

elektrických impulzov vytvára vedomá myseľ. Vytváranie vedomej mysle sa dá porovnať 

s fenoménom kultúry, ktorá sa vynorí ako dôsledok individuálnych intelektuálnych počinov.  

           Ak je mozog skutočne nelineárny dynamický systém pracujúci v kritickom stave, mali 

by sme pozorovať takéto javy: 

1.   Na väčších škálach by sme mali pozorovať ďalekodosahové korelácie v čase i priestore. 

2.   Na malých škálach by sme mali pozorovať lavínovitú činnosť.  

3.    Adaptívne procesy v mozgu by mali mať lavínovitý charakter, mali by  teda trvať veľmi  

       krátko. 

           Lokálne lavíny neuronálnej aktivity ako prví pozorovali Beggs a Plenz [29]. Čo sa 

ďalekodosahových korelácií týka, tie sa vyjavujú práve vo funkčných sieťach mozgu. 

Z nameraných fmri dát  ich môžeme vytvoriť takto: Pod uzlami potenciálnej funkčnej siete 

budeme rozumieť jednotlivé voxely. Hranu medzi dvoma voxelmi položíme vtedy, keď  sú 

časové signály medzi nimi skorelované. Mieru korelácie medzi voxelom i a j určuje lineárny 

korelačný koeficient r(i,j)  
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kde ( )( ) ( ) ( ) 222 tststs −= , ( )ts   je aktivita voxelu v čase t (meraná v nejakých jednotkách) a 

. predstavuje časové priemerovanie. Hrana medzi dvoma voxelmi i a j vznikne vtedy, keď 

korelačný koeficient ( )jir ,  prekročí istú preddefinovanú prahovú hodnotu 
cr . Väčšinou sa 

prahový koeficient 
cr  volí v rozmedzí hodnôt 0.6 až 0.8. Čím menší prahový koeficient 

použijeme, tým viacej uzlov sieť má, ale zároveň tým viacej náhodných korelácií 

zachytávame. Čím je koeficient 
cr  vyšší, tým lepšie sú aktivity voxelov skorelované, ale naša 

sieť môže mať príliš málo uzlov na to, aby sme mohli merať jej vlastnosti. 

           Keď Chialvov tým zmeral distribúciu stupňa uzlov funkčnej siete vzniknutej počas 

plnenia jednoduchej kognitívnej úlohy, zistil, že sa správa podľa rovnice (2.7). Sieť ktorá sa 

vytvorila má tak charakter bezškálovej siete. Posúvaním prahovej hodnoty korelačného 

koeficientu môžeme pozorovať ako sa charakter distribúcie mení.  

           Práca Chialvu a jeho kolegov tak ukázala, že v mozgu existujú ďalekodosahové 

korelácie medzi voxelmi [3, 26]. Teória nelineárnych dynamických systémov hovorí [12], že 

také korelácie môžu naznačovať, že systém pracuje na hranici poriadku a chaosu. Bližšie 

o funkčných sieťach mozgu pojednám v kapitole o aplikáciách teórie sietí, keď popíšem naše 

vlastné spracovanie dát  a funkčné siete vznikajúce pri rytmickom pohybe prstov. 

           Na záver už len krátka poznámka. Je veľmi zaujímavé sledovať fmri merania mozgu  

z miestnosti experimentátora. Ja  som sa ich zúčastnila počas študijného pobytu na 

Univerzitnej klinike v Tubingene na jar roku 2009.  Meraný študent mal za úlohu rytmicky 

zatínať a uvolňovať päsť, najprv niekoľko minút pravú a potom ľavú, podľa pokynov 

experimentátora. Na monitore sme sledovali ako sa aktivita mozgových oblastí presúva 

z ľavej  pologule na pravú. Keď sme sa naučili, ktoré časti mozgu sú zamestnané v prípade 

keď pracuje pravá päsť a ktoré keď pracuje ľavá, požiadal experimentátor študenta, aby 

prestal skutočne zatínať päste a len si predstavoval, ktorú päsť práve zviera. Našou úlohou 

bolo čítať jeho myseľ a z meraných signálov uhádnuť, či práve myslí na pravú, alebo ľavú 

ruku. Skúsení experimentátori hádali so sto percentnou istotou, my ostatní sme uhádli tak 70 

percent prípadov. Ak niekedy budete mať takú možnosť, veľmi odporúčam zúčastniť sa 

podobného experimentu. 

 

 



3.4   Sociálne siete 

         Štruktúra sociálnych sietí sa stala predmetom výskumu už v šesťdesiatych rokoch 

minulého storočia. Populárnym sa stal, napríklad, Milgramov experiment [2], ktorý vyústil 

v sformulovanie známeho  zákona šesťstupňovej separácie v sociálnej sieti.  

         Milgram  študoval štruktúru sociálnej siete a preto si vymyslel takýto experiment. 

Rozoslal sériu listov na náhodne vybrané adresy po celých Spojených štátoch.  Adresátov 

poprosil, aby odpoveď poslali na adresu známeho brookera v Bostone, ale nie priamo. Mali 

využiť sieť svojich sociálnych kontaktov a poslať list tomu, s kým sa dobre poznajú a o kom 

predpokladajú, že by mohol poznať niekoho, kto pozná niekoho.....kto pozná onoho brookera. 

Cieľom experimentu bolo určiť, koľkými rukami list v priemere prejde, kým sa dostane 

k adresátovi. Milgram zistil, že človek potrebuje okolo šesť sprostretkovateľov k tomu, aby sa 

dostal k inému, úplne neznámemu človeku. Tento zákon šesťstupňovej separácie v podstate 

potvrdzuje, že sociálne siete majú vlastnosti sietí malého sveta. Dokonca aj samotný pojem 

sieť malého sveta zaviedol Milgram.  

         Prečo je tomu tak? Skúsme uvažovat. Vaša, aj moja sociálna sieť má, dalo by sa 

povedať, istú štruktúru. Vytvárame si skupiny priateľov, napríklad na báze spoločných 

záujmov, poprípade na pracovnom základe. Ľudia v rámci jednej skupiny sa zvyčajne 

nepoznajú len s vami, ale aj navzájom. Priemerný klasterizačný koeficient v sociálnej sieti 

môže byť preto dosť vysoký. Zároveň však v našej sociálnej sieti existujú aj krátke spojenia. 

Vzniknú napríklad tak, že náš priateľ sa odsťahuje niekam ďaleko a v prípade potreby nám 

tak umožní kontakt s ľuďmi, ku ktorým by sme sa inak vôbec nedostali.   

         Separácia dvoch osôb v sieti profesionálnych kontaktov (kde napríklad v hereckej sieti 

herec je uzol a všetci herci, ktorí s ním hrali v niektorom filme, sú s ním spojení hranami. 

Alebo napríklad vedec je uzol a všetci tí, čo s ním napísali článok sú s ním spojení hranami) je  

ešte menšia [1]. Neskoršie štúdie ukázali [30, 31, 32], že sociálne siete majú aj vlastnosti 

bezškálovej siete, lebo sa v nich uplatňuje prefernčné pripájanie uzlov. Znamená to, že 

človek, ktorý je známy a má veľa kontaktov, má väčšiu pravdepodobnosť získať ďalšie 

kontakty, ako ten, čo ich nemá. Aj slávny herec bude skôr angažovaný do nejakého nového 

filmu ako začiatočník, známy vedec má väčšiu nádej napísať prácu s iným vedcom, ako 

niekto úplne neznámy.  

         V roku 2001 sa v Nature objavil zaujímavý článok, ktorý skúmal štruktúru iného typu 

sociálnej siete, siete sexuálnych kontaktov [32]. Autori analyzovali dáta zozbierané vo 

švédskom sociálnom výskume. Dotazník skúmal sexuálne správanie 2810 náhodne vybraných 

osôb vo veku od 17 do 74 rokov. Pretože sieť sexuálnych kontaktov nie je stabilná a s časom 



sa mení, autori sa najprv pýtali na počet  partnerov za posledných 12 mesiacov. Predpokladali, 

že zmeny počas takej krátkej doby je možné zanedbať. V sieti sexuálnych kontaktov, je 

jedinec uzlom a počet kontaktov predstavuje stupeň uzla k. Dobrou matematickou 

reprezentáciou siete sexuálnych kontaktov je bipartitný graf. V tomto grafe patria muži do 

jednej partície a ženy do druhej. Od prípadov, kde tomu tak nie je, môžeme odhliadnuť. 

          Distribúcia stupňa uzlov pre ženy aj mužov je veľmi podobná. V podstate spĺňa zákon 

(2.7), so škálovacími exponentami 54.2=  pre mužov a 31.2= pre ženy.  Ďalšia otázka sa  

týkala počtu partnerov, ktorých respondenti vystriedali počas celého doterajšieho života. 

Distribúcia stupňa uzlov v takejto sieti je podobná ako v prvom prípade, len s trochu inou 

hodnotou škálovacích exponentov ( 1.2=  pre mužov a 6.1=  pre ženy). Sieť sexuálnych 

kontaktov, podobne ako iné sociálne siete má tak bezškálový charakter. Pretože je aj 

sociálnou sieťou, dá sa predpokladať, že bude mať aj vlastnosti sietí malého sveta. 

 

3.5    Zhrnutie 

         Na príklade niekoľkých veľmi rôznych reálnych sietí sme si mohli všimnúť, že častokrát 

majú podobnú štruktúru. Charakterizuje ju bezškálovosť, poprípade hierarchia v usporiadaní 

uzlov a tiež to, že sú sieťami malého sveta. Hierarchia v sieťach sa však skúma len pár rokov, 

preto staršie práce sa touto otázkou  nezaoberajú. Fakt, že reálne siete majú  podobné 

vlastnosti, vedie k oprávneným úvahám o tom, že musí  existovať jednoduchý a v prírode 

pozorovaný spôsob rastu sietí, ktorého výsledkom sú pozorované vlastnosti reálnych sietí. 

V ďalších častiach tejto práce  ukážeme o aké procesy ide.          

         

4. Modely rastúcich sietí 

           Ak chceme porozumieť tomu, ako súvisí dynamika sietí s ich štruktúrou, môžeme 

študovať vhodné modely. V tejto časti predstavím základné modely rastúcich sietí. Potom sa 

pokúsim o niekoľko modifikácií týchto základných modelov, na ktorých ukážem, že finálna 

štruktúra siete je citlivo závislá na detailoch lokálnej dynamiky [9, 10, 33].  

           Aby sme získali istý vhľad do dynamiky modelov, je vhodné ich najprv simulovať na 

počítači. Skôr ako by sme sa snažili vyriešiť rovnice, získame takto istý odhad ako sa 

štruktúra siete mení v dôsledku dynamiky. Môžeme napríklad zmerať to, čo sa zmerať dá, 

teda charakteristiky, ktoré so štruktúrou siete súvisia. Môžeme zmerať distribúciu stupňa 

uzlov, priemerný stupeň, distribúciu priemerných klasterizačných koeficientov uzlov 

majúcich istý stupeň, poprípade iné charakteristiky nasimulovanej siete. 



            Rastúce  siete môžeme na počítači modelovať takto: 

1. Na začiatku máme pár uzlov pospájaných niekoľkými hranami. Simuláciu môžeme  

napríklad štartovať z malého kompletného grafu. Na tom v podstate príliš nezáleží, 

lebo vlastnosti veľkej siete počiatočný graf vôbec neovplyvní.. 

2. Nech každú časovú jednotku odkiaľsi z vesmíru priletí jeden uzol a pripojí sa m 

hranami  k starým uzlom.  Uzol môžeme identifikovať pomocou času s, v ktorom sa 

objavil. Uzol, ktorý prišiel do siete v čase 1 má index 1=s , ten, čo prišiel v čase 2 má 

2=s   a podobne. To, akým spôsobom pripájanie uzlov prebieha, je veľmi dôležité 

z hľadiska  celkovej štruktúry siete. 

3. Pridáme ďalšie lokálne procesy, ktoré sa dejú v tom istom časovom okamihu ako 

pripájanie nového uzla. 

4. Opakujeme od bodu 2. Sieť, ktorej finálnu štruktúru skúmame, musí byť dostatočne 

veľká, čím dlhšie simulácia beží, tým presnejšie zmeriame charakteristiky siete. 

Rôzne modely sietí sa líšia v implementácii bodu 2. a 3. K bodu 2. treba povedať, že sú dva 

základné spôsoby pripájanie uzlov k sieti: náhodné pripájanie a preferenčné pripájanie [9, 10, 

33]. Pri náhodnom pripájaní pravdepodobnosť, že sa nový uzol pripojí jedným koncom hrany 

k nejakému starému uzlu je rovnaká pre všetky staré uzly, teda  

                                                                
( )tNr

1
= ,                                                             (4.1)                                                       

kde ( )tN  je počet uzlov v sieti v čase t. Ak sa uzol pripojí do siete preferenčne, 

pravdepodobnosť pripojenia jedným koncom hrany k nejakému starému uzlu s je úmerná 

stupňu tohto uzla, teda  
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V rovnici (4.2) ik  je stupeň uzla i. Proces rastu siete s obidvoma spôsobmi pripájania uzlov 

možno opísať aj matematicky.  Ak použijeme prvý spôsob pripájania, dostaneme model 

s náhodným pripájaním, ak použijeme druhý spôsob, získame Barabási – Albert model (BA 

model) s preferenčným pripájaním uzlov [9, 10]. 

 

4. 1.   Model s náhodným pripájaním uzlov. 

          Predstavme si rastúcu sieť s náhodným pripájaním uzlov [10, 33]. Spusťme na počítači 

vyššie opísaný proces pre najjednoduchší prípad m=1 a urobme napríklad desať simulácií  

rastúcej siete. Keď sa pozeráme na jeden konkrétny uzol s, v čase t bude mať v prvej 



simulácii istý stupeň 1

sk . V druhej simulácii bude mať v čase t vo všeobecnosti stupeň 

12

ss kk  . Podobne je tomu aj v ďalších simuláciách. Stupeň konkrétneho uzla je tak náhodnou 

premennou.  Preto ak chceme vedieť, ako sa stupeň uzla s mení s časom, môžeme skúmať len 

priemerný stupeň uzla s a jeho časovú závislosť.    

           Môžeme sa preto najprv opýtať, aká je pravdepodobnosť ( )tskp ,, , že uzol, ktorý 

prišiel do siete v čase s bude mať v čase t nejaký stupeň k: 
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Prvý člen na pravej strane rovnice (4.3) znamená, že k uzlu s so stupňom k-1 (ktorý mal 

v čase t-1) sa v čase t pripojila jedna hrana a stupeň tohoto uzla sa zvýšil na k. Hrana sa 

pripojila s pravdepodobnosťou 
( )tN
1

 (4.1). Druhý člen v rovnici (4.3) hovorí, že uzol s už 

v čase t-1 mal stupeň k a nič sa nestalo.  

             Ako vyriešiť rovnicu (4.3)? V prvom rade musíme vedieť počet uzlov siete v danom 

čase. Keďže simuláciu štartujeme z malého počiatočného grafu, ktorý v konečnom dôsledku 

veľmi nezaváži, a keďže každú časovú jednotku prichádza do siete jeden uzol, ( ) ttN  . 

Potom rovnicu (4.3) možno prepísať takto: 
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Keď túto rovnicu vynásobíme časom t, upravíme a prejdeme k spojitej limite (čo pre veľké 

siete môžeme urobiť) [10, 33], diferenčná rovnica (4.4) sa zmení na diferenciálnu 
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Ak (4.5) vynásobíme veličinou k a preintegrujeme cez k v medziach od 0 do   dostaneme 

s využitím vzťahu  ( ) ( )dktskpktsk 


=
0

,,,  konečne rovnicu pre priemerný stupeň uzla s, 

v čase t, k(s,t):    
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Riešením tejto rovnice je 
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kde sme využili hraničnú podmienku k(s,s)=1, teda, že uzol, ktorý prišiel do siete v čase s má 

v dobe svojho zrodu stupeň jedna (jednou hranou sa pripojil k starým uzlom). Vieme teda, 

ako sa priemerný stupeň uzla s mení s časom.  To, čo nás však zaujíma ešte viac je štruktúra 

siete, teda to koľko akých uzlov v sieti je a ako sú poprepájané. Aká je, napríklad, distribúcia 

stupňa uzlov? Dá sa to analyticky vypočítať? Dobrou správou je, že dá [10, 33]. Potrebujeme 

v podstate spočítať koľko uzlov daného stupňa sa v takto skonštruovanej sieti nachádza 

a prenormovať počtom všetkých uzlov:           
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V tejto rovnici N(t)=t je počet uzlov v sieti a delta funkcia sa rovná jednej ak k=k(s,t). Ak 

integrujeme  cez všetky uzly s, spočítame tak vlastne počet tých uzlov, ktoré majú práve 

stupeň k. Pravú stranu rovnice (4.8) získame využitím vlastností delta funkcie [10, 33, 36].  

S použitím rovníc  (4.7) a (4.8) dostaneme pre veľké časy distribúciu stupňa uzlov siete 

rastúcej pomocou procesu náhodného pripájania nových uzlov 

                                                           ( ) kekP − ,                                                               (4.9) 

kde ( ) 02ln = . Vidíme, že v takejto sieti je veľa uzlov s malým stupňom. Počet uzlov 

s väčším stupňom  exponenciálne rýchlo klesá k nule.  

             Model siete s náhodným prepájaním uzlov je dobrý vtedy, ak dokáže vysvetliť 

štruktúru sietí, ktoré rastú podobnými procesmi. Neskôr spomeniem nejaké príklady. 

 

4. 2.   Barabási – Albert model. 

             Skúsme sa teraz pozrieť podrobnejšie na iný model, v ktorom sa uzly pripájajú do 

siete preferenčným spôsobom [9, 10, 33]. Opäť zvolíme najjednoduchší prípad, keď každý 

novoprišlý uzol sa do siete pripojí jednou hranou  (m=1). Úprava rovníc pre prípad 1m  je 

veľmi jednoduchá a pre čitateľa bude užitočným cvičením. Pravdepodobnosť pripojenia 

konca hrany k uzlu je pri preferenčnom pripájaní daná rovnicou (4.2).  Takýto model rastúcej 

siete bol prvýkrát analyzovaný roku 1999 dvoma autormi a nesie aj ich meno: Barabási – 

Albert model (BA model) [9]. Barabási a Albert, inšpirovaní častým výskytom bezškálovej 

štruktúry v reálnych sieťach, vznikajúcich samoorganizovanými procesmi, hľadali 

jednoduchú a v prírode pozorovateľnú dynamiku, ktorá by prirodzene viedla k vzniku takejto 

štruktúry. V  práci [9] dokázali, že preferenčné pripájanie uzlov je takou dynamikou.  

           Ak proces simulujeme na počítači a pozorujeme aký stupeň má v čase t istý uzol s, 

zistíme, že stupeň uzla s je, podobne ako v prípade náhodného pripájania nových hrán, 



náhodnou premennou. Preto môžeme niečo povedať len o tom, ako sa s časom mení 

priemerný stupeň uzla s, k(s,t). Podobne ako v predošlom modeli sa pýtame, aká je 

pravdepodobnosť, že uzol s má v čase t+1 stupeň k: 
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Členy na pravej strane rovnice (4.10) majú podobný význam ako v prípade náhodného 

pripájania uzlov, až na to, že pravdepodobnosť pripojenia je úmerná stupňu uzlov 

a normovacia  konštanta je  preto súčtom všetkých stupňov uzlov (4.2). Podľa rovnice (2.1) je 

tento súčet rovný dvojnásobku počtu hrán v sieti. Keďže každú časovú jednotku prichádza do 

siete jedna nová  hrana,  pre veľké t je počet hrán v systéme ( ) tte 2= . Ak, samozrejme, 

odhliadne - 

 

 

Obrázok 7. Vizualizácia siete vytvorenej preferenčným pripájaním uzlov, kde 2=m  je počet hrán 

prinesených novým uzlom. Z obrázku vidieť, že sieť pozostáva z uzlov rôznych stupňov. Dva uzly 

s veľkým počtom susedov (huby) sú vyznačené trhanou čiarou. Najviacej uzlov je však takých, ktoré 

majú malý stupeň. Simulované pomocou Network Workbench Tool [34]. 

 

me od tých pár hrán v počiatočnom malom grafe. Teda môžeme položiť tk
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dosadíme do (4.10), dostaneme 
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Keď rovnicu (4.11) prenásobíme 2t, upravíme a prejdeme k spojitej limite, dostaneme 

diferenciálnu rovnicu  
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a po prenásobení (4.12) faktorom k a integráciou oboch strán rovnice cez dk v medziach od 0 

po   dostaneme rovnicu pre priemerný stupeň uzla s, k(s,t) 
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Riešením (4.13) je  
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a ak použijeme vzťah pre výpočet distribúcie stupňa uzlov (4.8), dostaneme  

                                                              ( ) 3, = − kkP                                                   (4.15) 

Dá sa ukázať, že pre bezškálové siete platí [10, 33] 

                                                                    



1

1+=                                                          (4.16) 

a teda exponent   možno získať aj bez počítania distribúcie (4.8). Ako možno nájsť 

vzájomnú závislosť exponentov v bezškálových sieťach?  Z rovnice (4.14) vieme, že  ak 

zafixujeme čas, potom platí  − sk . Rovnica (4.8) zasa hovorí, že  11−−− 



 k
k

s
k . 

Porovnaním ľavej a pravej strany tejto rovnice a s použitím vzťahu (4.15) dostaneme (4.16).  

              To, čo sme práve matematicky dokázali (4.8, 4.14, 4.15), nie je nič iné, ako dokázané 

tvrdenie, že preferenčné pripájanie uzlov je ten mechanizmus, ktorý vytvára bezškálový typ 

siete. Navyše preferenčné pripájanie nových uzlov k sieti nie je neznáme ani v realite. 

Predstavme si, napríklad, sociálnu sieť. Už sme spomenuli, že človek (uzol), ktorý je známy 

a populárny (má veľa kontaktov a teda vysoký stupeň), má omnoho väčšiu šancu získať nové  

kontakty a ďalšie priateľstvá, ako ten, ktorého nikto nepozná. Aj v citačnej sieti ten článok 

(uzol), ktorý prináša nejaký významný objav, má omnoho väčšiu šancu byť citovaný v iných 

prácach [35]. Podobne je tomu aj v iných reálnych sieťach, spomínali sme, napríklad, sieť 

profesionálnych kontaktov [30, 31]. Ale je to tak aj vo www sieti [33, 37, 38], v ktorej uzly sú 

predstavované www stránkami a hrany hypertextovými odkazmi. Stránka významnej 



osobnosti, alebo inštitúcie  má určite väčšiu pravdepodobnosť, že sa na ňu budú odkazovať 

z iných stránok, ako úplne neznáma www stránka.   

              Pravdepodobne som vás presvedčila, že  preferenčné    pripájanie  uzlov  môže   byť  

dôvodom    bezškálovej štruktúry reálnych sietí. Preto je BA model základným modelom, 

ktorý pomáha  porozumieť ich štruktúre a vystihuje základné kvalitatívne ba dokonca aj 

kvantitatívne vlastnosti mnohých reálnych sietí. Kvantitatívne preto, lebo merania v reálnych 

sieťach ukazujú, že škálovacie exponenty   (4.15) sú v nich obyčajne v rozmedzí hodnôt 

0.35.2 −  [10, 33]. Uvidíme neskôr, že zmena škálovacieho exponentu je spôsobená 

dodatočnými dynamickými procesmi v sieti. 

 

            

 

Obrázok  8. Distribúcia stupňa uzlov pre BA model . Sieť má N=30000 uzlov, m=2. N(k) predstavuje 

počet uzlov stupňa k. Obrázok je v logaritmickej škále a lineárna závislosť potvrdzuje rovnicu (4.15). 

Exponent    možno zmerať ako tangens smerového uhla priamky.  

 

          Mocninná distribúcia stupňa uzlov (obrázok 8) naznačuje, že v sieti sa vyskytujú uzly 

všetkých stupňov. Jediným ohraničením stupňa je počet hrán v sieti. Sieť má zaujímavú, sebe 

podobnú štruktúru, ktorá sa veľmi často vyskytuje aj v reálnych sieťach  (obrázok 7). Niet 

v nej žiaden význačný, typický uzol s typickým stupňom. Práve preto sa takáto sieť nazýva 

bezškálovou.  



           V BA modeli, ako sme videli vyššie, pravdepodobnosť pripojenia novej hrany 

k starému uzlu je úmerná stupňu tohto uzlu. To vedie k mocninnej distribúcii stupňa uzlov so 

škálovacím exponentom 3=  (4.15).  Skúsme BA model mierne pozmeniť [10]. Predstavme 

si, že p  (4.2) je úmerné k+A, kde A je nejaká konštanta. Potom rovnicu (4.13) možno 

modifikovať takto 
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V rovnici (4.17) m je počet koncov hrán, ktorými sa nový uzol pripojí k starým uzlom. 

Normovaciu konštantu, predstavovanú integrálom v menovateli, vypočítame  takto: 

Zintegrujeme obe strany rovnice (4.17) podľa ds a dostaneme  

 

  

 

Obrázok 9.  Distribúcia stupňa uzlov pre náhodný graf (Eordos, Rényi model A), pravdepodobnosť 

hrany medzi dvoma uzlami je 0.1, počet uzlov N=10000. N(k) predstavuje počet uzlov majúcich 

stupeň k. Simulované s pomocou Network Workbench Tool [34]. 
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S použitím vzťahu ( ) ( )
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Rovnica (4.17) tak bude 
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čo je diferenciálna rovnica, ktorá má riešenie  
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Odtiaľ dostaneme, že 
m

An +
+=+= 2

1
1


  .  Ak A=0 a n=m, dostávame   exponent BA 

modelu.  Konštanta 0n , pretože uzol v čase svojho príchodu do siete sa k starému uzlu 

vždy pripojí aspoň jednou hranou. Ak aj 0An + , hodnoty exponentov     sú v intervale 

( ),2 .  Konštanta A tak nemení charakter distribúcie stupňov uzlov, mení však veľkosť 

škálovacieho exponentu. Exponent závisí od dodatočnej atraktivity (fitness) uzla. 

 

4.3   Siete so zmiešaným preferenčným a náhodným pripájaním. 

        Predstavme si teraz model rastúcej siete, v ktorom sa mieša preferenčné a náhodné 

pripájanie nových hrán k starým uzlom [10]. Počet nových hrán, ktorý pribudne každú časovú 

jednotku do siete nech je mnr + , a nech sa m  koncov nových hrán pripojí k uzlu s 

preferenčným spôsobom a rn   koncov nových hrán náhodne. Druhé konce hrán sú pripojené 

k novému uzlu. Potom rovnicu (4.17) možno modifikovať takto 
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V tejto rovnici prvý člen na pravej strane predstavuje pravdepodobnosť pripojenia rn  koncov 

hrán náhodným spôsobom a druhý pravdepodobnosť pripojenia m  koncov hrán preferenčným 

spôsobom. Priemerný stupeň uzla s sa môže meniť vďaka obidvom spôsobom pripojenia 



nových hrán. Nech opäť ( ) 00,0 =k  a ( ) nttk =, .  Podobným spôsobom aký bol použitý pre 

modifikáciu BA modelu, môžeme vypočítať integrál v rovnici (4.22) a dostaneme  
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Riešenie rovnice (4.23) vedia na 
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a vezmúc do úvahy vzťah (4.16) exponet   pre distribúciu stupňa uzlov bude 

                                                             
m

Annr ++
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Podľa rovnice (4.25) vidíme, že bezškálová sieť môže vzniknúť aj tak, že časť nových hrán sa 

do siete pripojí náhodným spôsobom. Jediné, čo sa zmení je škálovací exponent  .       

           Ak sa rozhodnete dočítať tento text až po časť 6, dozviete sa aj o ďalších typoch 

analyticky riešiteľných sieťových modelov. Predstavím v nej niektoré naše výsledky v tejto 

oblasti. Zavediem ďalšie procesy, napríklad presmerovanie starých hrán, vznik nových hrán 

medzi starými uzlami a ukážem, ako tieto dodatočné efekty ovplyvňujú celkovú štruktúru 

siete. Uvidíte tiež, že modely rastúcich sietí nie sú samoúčelnou matematickou 

ekvilibristikou, ale hlavne nástrojom, ktorý dokáže vysvetliť to, čo sa deje v reálnych sieťach. 

 

4.4   Siete so zrýchleným rastom. 

        V základnom BA modeli, ktorý sme rozobrali v časti 4.2, počet hrán v systéme je 

lineárnou funkciou času, lebo do siete každú časovú jednotku pribudne nový uzol, ktorý 

prinesie konštantný počet nových hrán. Takýto lineárny rast nemení priemerný stupeň uzlov 

v sieti. V danej verzii BA modelu suma všetkých stupňov uzlov je 2t, prípadne 2mt (2.1), ak  

1m  je počet hrán, ktoré prinesie do siete každý nový uzol. Počet uzlov v sieti v čase t je 

N(t)= t. Odtiaľ možno vypočítať, že priemerný stupeň uzla 2
2

==
t

t
k  prípadne 

m
t

mt
k 2

2
== . Ukazuje sa však, že takýto lineárny rast nie je v reálnych sieťach úplne 

typický. Merania dokazujú, že napríklad vo www sieti,  v internetovej sieti (na úrovni 

domén), ako aj  v sieti profesionálnych kontaktov priemerný stupeň uzla s časom pomaly, ale 

iste  rastie [39].   



           Pre BA model distribúcia stupňa uzlov je určená škálovacím exponentom 3= . 

V predošlých častiach sme ukázali, že toto nie je jediná možná hodnota škálovacieho 

exponentu pre lineárne rastúce siete. Ak chceme odhadnúť dolnú hranicu intervalu 

škálovacích exponentov, môžeme napríklad využiť aj fakt, že v takýchto sieťach je priemerný 

stupeň uzla konečný. Musí teda platiť, že ( ) = 


dkkkPk
1

. Ak ( ) − kkP  potom 

= 


+− dkkk
1

1  a teda, ako už bolo iným spôsobom ukázané, 2 . Škálovací 

exponent BA  pre BA model túto nerovnosť spĺňa.  

           Keď meriame distribúciu P(k) v reálnych bezškálových sieťach, zistíme, že mocninne 

sa správa len v istých medziach, ktoré sú tvorené dvoma hranicami 
0k  a 

cut
k . Prvá hranica 

znamená, že uzol s nižším stupňom sa v danej sieti nenachádza. Druhá hranica je spôsobená 

konečnou veľkosťou siete a počet uzlov s väčším stupňom je rádu jedna. Ak použijeme 

normalizačnú konštantu  
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potom rovnici (4.26) vyhovuje takýto tvar distribúcie stupňa uzlov 

                                                     ( ) ( )  cutkkkkkkP 0
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0 ,1~  −−−  .                            (4.27) 

Ak 2 , druhú hranicu cutk  odhadneme z kumulatívnej distribúcie  
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k

cum 

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ktorá počíta pravdepodobnosť výskytu uzlov majúcich stupeň väčší ako istý stupeň k. Ak je 

počet takých uzlov rádove jedna, potom z rovnice (4.27), (4.28) a vzťahu ( )( ) 1~tktP cutcum  

vyplýva  

                                                               ( )1
1

0~ −tkkcut .                                                       (4.29) 

         Toto všetko platí pre siete s mocninnou závislosťou distribúcie stupňa uzlov, teda tie, 

ktoré voláme bezškálovými. Jediná škála, ktorá tu zohráva nejakú úlohu, je daná 

prirodzenými hranicami samotného problému. To, že tieto hranice existujú, sťažuje meranie 

škálovacieho exponentu pre reálne siete. Napríklad meranie veľkých škálovacích exponentov 

  je vďaka závislosti (4.29) nemožné, pretože lineárna časť distribúcie je veľmi krátka aj 

vtedy, keď je sieť veľmi veľká. Keďže škálovací exponent sa meria ako tangens smerového 



uhla pre distribúciu zobrazenú v dvojitej logaritmickej škále, potrebujeme, aby lineárna časť 

bola dostatočne dlhá pre algoritmy fitujúce dáta priamkou. 

           Preskúmajme teraz konečne siete so zrýchleným rastom [39], v ktorých priemerný 

stupeň uzla nie je konštantný, ale rastie lineárne s časom 

                                                             0, atk a ,                                                     (4.30) 

kde a je exponent rastu. Ak uvážime, že počet hrán v systéme je daný vzťahom (2.1) a počet 

uzlov v čase t je N(t)=t, potom ( )tNkk
N

i

i =
=1

, potom odtiaľ dostaneme, že  

                                                                  ( ) 1+ atte                                                          (4.31) 

Pre zrýchlený rast môžeme predpokladať, že distribúcia stupňa uzlov bude nestacionárna a 

správa sa takto [39]: 

                                                                ( ) −kttkP z~,  ,                                                   (4.32) 

kde 0z  je nový škálovací exponent. P(k) sa podľa zákona (4.32) správa len v hraniciach  

( ) ( )tkktk cut0
. Podobným postupom, ako pre siete bez zrýchleného rastu, len s tým 

rozdielom, že použijeme (4.32), určíme, že  

                                                                 ( ) ( )1
0 ~ −

z

ttk                                                         (4.33) 

a tiež  

                                                             ( ) ( ) ( )11~ −+ z

cut ttk .                                                   (4.34) 

Rovnica (4.33) platí  dokonca pre 1 .   

            Pozrime sa na dva prípady, 21    a 2 . Treba mať stále na pamäti, že 

uvažujeme len prípad, keď uzly do siete len pribúdajú a žiaden z nich zo siete neodbudne. 

1.  21     

Pre siete so zrýchleným rastom, priemerný stupeň uzlov rastie s časom podľa rovnice (4.30). 

Preto, ak vypočítame ( )dkkPkk
cutk

k

=

0

 a použijeme (4.32) a (4.34), dostaneme 
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za tdkkktt

z

, lebo integrál je dominovaný hornou hranicou. Odtiaľ 

vidíme, že ( ) ( )111 −+=+ za  a efekt konečnosti systému daný cutk sa prejaví so 

zohľadnením (4.31) a (4.33) takto 

                                                                ( )tetk a

cut ~~ 1+ .                                                (4.35) 



Čiže hornou hranicou stupňa uzla je maximálny stupeň, ktorý je pre danú sieť vôbec možný. 

Horná hranica pre tento prípad teda vlastne neexistuje, resp. je daná len časovo závislým 

počtom hrán v sieti. Z predošlých úvah je možné určiť aj vzájomnú závislosť  škálovacích 

exponentov ,a  a z : 

                                                                    
1

1
1

+

+
+=
a

z
  .                                                  (4.36) 

Ak sa má   nachádzať v intervale ( )2,1 , exponent z musí byť menší ako a. Ak je distribúcia 

stacionárna, teda 0=z  (4.32), potom 
1

1
1

+
+=
a

 . 

 

2.  2  

V tomto prípade integrál ( ) ( )1/2~~
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 je dominovaný dolnou hranicou. 

Odtiaľ dostávame 
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z
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Ak má byť   väčšia ako dva, potom musí platiť, že 0 az  a tiež aj to, že stacionárna 

distribúcia stupňa uzlov v tomto prípade vôbec neexistuje. Je tomu tak preto, že ak 0=z , 

exponent    nemôže byť väčší ako 2. To je však práve prípad, ktorý rozoberáme. 

           Tak ako v predošlej časti, nech aj pre siete so zrýchleným rastom platí:  ( )tskp ,,  je 

pravdepodobnosť, že uzol, ktorý došiel do siete v čase s má v čase t stupeň k. Priemerný 

stupeň uzla s, v čase t sa potom dá vypočítať zo vzťahu  
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Predpokladajme, že pre bezškálové siete so zrýchleným rastom je ( )tsk ,  dané takýmto 

vzťahom [39] 
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kde   a   sú škálovacie exponenty. Dá sa ukázať [39], že ( )tskp ,,  je  
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kde g je škálovacia funkcia. Z rovnice (4.39) a zo vzťahu ( ) ( )dstskp
t

tkP

t

=
0

,,
1

,  a tiež (4.32) 

možno odvodiť vzťahy pre škálovacie exponenty 
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Keď vezmeme do úvahy rovnice pre škálovacie exponenty, môžeme konečne odvodiť finálne 

vzťahy pre ( )tskp ,,  a ( )tkP , : 
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                                                     ( ) ( ) ( )( )11, −+−−=  zz ktGkttkP .                                          (4.44) 

V (4.44) ( )G  je škálovacia funkcia. V prípade, že 0=z  máme siete, v ktorých 

nepozorujeme zrýchlený rast. 

              V tejto časti práce som uviedla všeobecnú teóriu sietí so zrýchleným rastom. Vzťahy 

pre siete s lineárnym rastom, reprezentované napríklad BA modelom sú vlastne limitným 

prípadom sietí so zrýchleným rastom. V nasledujúcej podkapitole zistíme, ako  modely sietí 

so zrýchleným rastom modelujú reálne situácie. Neskôr, v časti dotýkajúcej sa praktických 

aplikácií teórie sietí, ako ilustráciu toho, že teória sietí nie je samoúčelná, ukážem aj niektoré 

reálne siete, ktoré vznikali procesom zrýchleného rastu.  

 

4.5       Ilustratívne modely pre siete so zrýchleným rastom. 

            Predpokladajme, že naša sieť rastie tak, ako to bolo opísané v úvode tejto časti. 

Predpokladajme ďalej, že pripájanie uzlov je preferenčné, teda ( ) ( )tAtskp +,~  a ( )tA  nech 

je nejaká dodatočná, vo všeobecnosti časovo závislá veličina, ktorú nazveme  fitness, alebo aj 

atraktivita uzla. Nech počet  hrán, ktoré každú časovú jednotku prinesie do systému nový 

uzol, je daný mocninným zákonom atc0 .  

            Nech najprv ( ) AtA =  je od času nezávislou konštantou. Potom pre priemerný stupeň 

uzla, ktorý prišiel do siete v čase s a my ho pozorujeme v čase t platí 
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Počiatočné a hraničné podmienky sú ( ) ( ) 0,0,0 == ttkk . Ak rovnicu (4.45) vyriešime, 

dostaneme výsledok  
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a použijúc vzťah (4.41) pre škálovací exponent distribúcie stupňa uzlov získame  
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Predstavme si na chvíľu, že čas t je zafixujeme. Potom ( ) ( )1, +− astsk  a preto, lebo stupeň 

uzla nemôže rásť nad všetky medze, 11+a . Odtiaľ vidíme, že 2  (4.47). Takáto sieť je 

teda modelom prípadu 21   , spomínaného v časti 4.4. Ak vypočítame distribúciu stupňa 

uzlov pomocou rovnice (4.8), dostaneme od času nezávislú, stacionárnu distribúciu  
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Vzhľadom na (4.36) pre 0=z  tento výsledok nikoho neprekvapí. 

        Predpokladajme teraz, že dodatočná atraktivita (fitness)  uzla v sieti nie je konštantná, ale 

sa mení s časom. Konkrétne, nech ( ) 0,
1

0 B
a

tc
BtA

a

+
= , B nech je konštanta. Podobne, ako 

v predošlom prípade môžeme vypočítať distribúciu stupňa uzlov. Ukazuje sa, že je 

nestacionárna, a teda závislá od času 
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ak k je omnoho väčšie ako at . Vidíme, že ak 1Ba , potom škálovací exponent  
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Takáto sieť je teda modelom druhého prípadu, opísaného v časti 4.4, kde 2 . Týmito 

výpočtami som vlastne ukázala, že mocninný rast priemerného stupňa uzlov v sieti vedie na 

mocninnú distribúcie stupňa uzlov.  

          Teória sietí so zrýchleným rastom umožňuje pochopiť aj vlastnosti niektorých reálnych 

sietí. Ukážem  niekoľko konkrétnych príkladov. O sieťach jazyka a o svojich vlastných 

výsledkoch, týkajúcich sa tohto špeciálneho typu sietí  s časovo závislou fitness budem 



hovoriť neskôr. Na tomto mieste ukážem modely distribúcie kapitálu v spoločnosti, ktorá sa 

s časom nejakým spôsobom mení. Ukážem tiež ako je bohatstvo rozdelené v spoločnosti, 

ktorá stagnuje, potom v tej, ktorá sa rozvíja a nakoniec v takej, ktorá zaniká [39].  

           Aby sme takéto spoločenstvo mohli modelovať, zavedieme niekoľko zjednodušení. 

Budeme predpokladať, že každú časovú jednotku sa narodí len jeden človek a že nik 

nezomrie. Ďalej predpokladáme, že neexistuje žiadna inflácia a peniaze sa nikde nestrácajú.  

Pod stabilnou spoločnosťou budeme rozumieť takú, kde sa množstvo peňazí vlastnených 

jedincom s časom nemení. Ak sa spoločnosť rozvíja,  tento kapitál s časom rastie 

a v zanikajúcich spoločnostiach, naopak, klesá. Ak je distribúcia kapitálu k, ( )kP , daná 

mocninným zákonom ( ) − kkP  a 2 , potom spoločnosť nie je férová. Nachádza sa v nej 

veľa ľudí, ktorí vlastnia veľmi málo, ale aj pomerne veľa boháčov. Naopak ak 2 , 

spoločenstvo je férové v tom, že počet veľmi bohatých ľudí rýchlo klesá s rastúcim 

bohatstvom. Ak ( )kP  klesá exponenciálne rýchlo, spoločnosť je superférová, pretože v nej 

veľmi majetní jedinci prakticky neexistujú. V tejto spoločnosti sú si všetci rovní, ale rovní 

v chudobe.  

             Takáto predstava o férovosti spoločenstva sa môže zdať trochu divnou. Za férovú 

skôr zvykneme považovať takú spoločnosť, v ktorej je veľký podiel relatívne bohatých 

jedincov a nie tú, kde všetci majú málo. Autori práce [39] však férovosť definovali tak, ako 

som to opísala vyššie. 

            Predstavme si, že tok kapitálu do spoločnosti je mocninnou funkciou času, teda je 

úmerný 
tk  .  Exponent   hovorí o tom aká spoločnosť je. Ak 0= , spoločnosť je 

stabilná, ak je 0  ( 0 ) spoločnosť  zaniká (rozvíja sa).  

           Zo skúsenosti všetci vieme, že platí jednoduché pravidlo, ktoré sa dá vyjadriť vetou 

„peniaze priťahujú ďalšie peniaze“. Toto pravidlo je v spoločnosti často vyvažované tým, že 

časť bohatstva sa rozdeľuje rovnakým dielom medzi všetkých jej členov. Spravodlivosť totiž 

velí, že vo väčšine spoločenstiev má každý jedinec nárok na istý štartovací kapitál. Patria 

k nemu peniaze, ale aj duchovné bohatstvo, predstavované napríklad vzdelaním. Aj vzdelanie 

totiž môže priniesť človeku nejaké peniaze.  Isté množstvo  kapitálu môže  človek  dostať už 

pri narodení. Počiatočný kapitál jedinca môže s časom rásť, alebo môže ostat celý čas 

konštantný .  

           V ďalšom budeme predpokladať, že jednotliví členovia spoločenstva dostanú nejaký 

počiatočný kapitál pri narodení v čase s, kde  ts  . Pretože, podľa predpokladu, každú 

časovú jednotku sa narodí len jeden člen spoločnosti, čas narodenia s je aj identifikačným 



znakom, pomenovaním jedinca. Predpokladajme ďalej, že ( )tsk ,  je priemerný kapitál osoby, 

ktorá sa narodila v čase s a my sa s ňou stretneme v čase t. 

 

a)    Stagnujúce spoločenstvo 

        Nech 
sm  je kapitál, ktorý dostane osoba s pri narodení. Nech 0A  je dispozícia jedinca 

zarábať peniaze. (Všimnime si, že táto dispozícia (fitness) môže byť celý život konštantná, 

alebo môže s časom rásť, napríklad vďaka vzdelaniu, či klesať, napríklad kvôli chorobe.) 

Predpokladáme, že schopnosť jedinca zarábať peniaze sa sa časom nemení. Každú časovú 

jednotku do spoločnosti prichádza kapitál m, z ktorého jedinec dostane istý podiel.  Zlomok p 

z tohto kapitálu je distribuovaný rovnako každému, časť (1-p) si jedinci privlastňujú podľa 

zákona „peniaze prinášajú peniaze“, teda preferenčne. Individuálne bohatstvo osoby s sa bude 

s časom vyvíjať takto 
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s počiatočnou podmienkou ( ) 00,0 =k  a s hraničnou podmienkou ( ) smttk =, . Keď rovnicu 

(4.51) vyriešime a pomocou metód spomínaných v predošlých častiach tejto kapitoly získame 

distribúciu stupňa uzlov,  zistíme, že má mocninný charakter (4.15) s exponentom  
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Pre stabilné spoločnosti  platí, že sú férové, ak teda férovosť znamená relatívnu rovnosť 

bohatstva jedincov, aj keď je to rovnosť v chudobe. 

 

b)    Spoločenstvo, ktoré sa rozvíja alebo zaniká 

        Predpokladajme teraz, že štartovací kapitál, ktorý jedinec dostane pri svojom narodení 

nie je konštantný, ale je úmerný priemernému bohatstvu v spoločnosti  ( ) dmttms = , kde d je 

kladná konštanta. Priemerné bohatstvo v spoločnosti sa s časom mení. Nech sa spoločenské 

bohatstvo opäť distribuuje čiastočne férovo (teda rovnakým dielom každému) a čiastočne 

preferenčne (teda tí, čo majú viacej, aj viacej dostanú). Nech zlomok férovo distribuovanej 

zložky  je p, a zlomok preferenčne distribuovanej zložky nech je p−1 . Pre jednoduchosť tiež 

predpokladajme, že každý má rovnakú (nulovú) dodatočnú schopnosť zarábať peniaze 

( ( ) 0, =tsA ). Potom sa priemerné individuálne bohatstvo osoby s mení s časom takto 
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Počiatočná podmienka aj v tomto prípade je ( ) 00,0 =k  a hraničná podmienka ( ) dmtttk =, .    

          Riešenie rovnice (4.53) vedie k distribúcii bohatstva, ktorá závisí od parametrov p, d a 

  [39].  

1.   Ak ( ) ( )dpp +−1 , potom distribúcia bohatstva  je exponenciálna a spoločnosť je  

       superférová. 

2.   Ak ( ) ( )dpp +−1 , distribúcia má mocninný charakter s exponentom  
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Ak v druhom prípade 1−= , potom 2= . To je práve hranica prechodu medzi férovou 

( )1,2 −   a neférovou spoločnosťou ( )1,2 −  . Tento bod prechodu nezávisí od 

hodnôt p a d, čo naznačuje, že ani ak sa veľká časť nového majetku rozdeľuje férovo, 

nezabráni to neférovej distribúcii kapitálu v zanikajúcej spoločnosti. Tento záver nijako 

neprekvapuje, pretože je v súlade s našou skúsenosťou. Pripomínam, že spoločnosť 

považujeme za zanikajúcu ak 0 , za rozvíjajúcu sa ak 0  a stabilnú ak 0= . Treba 

mať na pamäti, že férovosť a rozvoj sú dva rôzne pojmy. 

         Vyššie opísané modelovanie toku kapitálu v spoločnosti je zrejme príliš zjednodušené. 

Vnímavý čitateľ si pravdepodobne všimol, že okrem iných zjednodušení sme mlčky 

predpokladali aj neohraničenú dobu života jednotlivca. Ale aj napriek tomu, že modely majú 

od reality ďaleko, predsa len ukazujú, ako možno teóriu sietí použiť v praxi. Ak by sme chceli 

realistickejší model,  museli by sme citlivejšie zvážiť, ktoré vplyvy sú pre distribúciu kapitálu 

dôležité a ktoré nie. Ak by sme však zahrnuli príliš mnoho vplyvov, možno by sme dostali 

model, integro - diferenciálnu rovnicu, ktorú by bolo ťažké analyticky vyriešiť. Pri tvorbe 

modelu musíme vždy brať do úvahy dva aspekty. Model by mal byť čo najrealistickejší, ale, 

ak vôbec chceme získať nejaké výsledky, aj riešiteľný. Samozrejme, môžeme urobiť 

počítačový model a numericky skúmať, ako sa správa. Analytické výsledky sú však vždy 

cenné, pretože sú presné. 

       Teória sietí so zrýchleným rastom modeluje situácie, ktoré sú častokrát bližšie k realite 

ako napríklad BA model a jeho variácie. Tieto modely na základe princípu preferenčného 

pripájania uzlov vysvetľujú vznik bezškálových sietí. Nevysvetľujú však ako sa v sieťach 



vytvára ďalšia dôležitá vlastnosť, a to je hierarchická organizácia uzlov. Nepomôže nám ani 

teória sietí so zrýchleným rastom. V piatej časti preto poviem o hierarchii niečo viac.  

 

 

5.     Hierarchické siete 

        V kapitole venovanej reálnym sieťam sme spomenuli, že ich bezškálová štruktúra je 

často doprevádzaná hierarchickou štruktúrou [15, 16, 17]. Z predošlých častí tejto práce 

vieme, že znakom bezškálovej siete je mocninná distribúcia stupňa uzlov 

                                                                   ( ) − kkP .                                                         (5.1) 

Znakom hierarchického usporiadania je zasa mocninná distribúcia priemerných 

klasterizačných koeficientov uzlov majúcich stupeň k [15], teda 

                                                                   ( ) − kkC ,                                                        (5.2) 

kde   je nový škálovací exponent. 

           Základná otázka, ktorú si odborníci v teórii sietí musia položiť je :  Ak sú bezškálové 

a zároveň hierarchické siete v realite také časté, musí existovať jednoduchý a prirodzený 

dynamický proces, ktorým sieť rastie a ktorý vytvára hierarchickú bezškálovú štruktúru. 

Riešeniu tejto otázky sa, okrem iných, venovali aj autori prác [15, 16, 17].  Ako jedni 

z prvých si ju položili Ravászová a Barabási [15]. V práci [15] navrhli proces rastu siete, 

ktorý vytvára finálnu bezškálovú hierarchickú štruktúru. Numerickou simuláciou sa im 

podarilo ukázať, že  hierarchická a zároveň bezškálová sieť rastie tak, že sa v každom 

časovom okamihu k   sieti nepripája  len jeden uzol, ako je tomu napríklad v BA modeli, ale 

viacej uzlov tvoriacich istú pevnú štruktúru.  

          Ravászovej a Barabásiho (RB) proces si najlepšie objasníme pomocou obrázku. 

Na obrázku 10 vidíme, že rast siete začína z počiatočného päť uzlového modulu, ktorý tvorí 

kompletný graf (obr. 10 a). Tento modul sa v nasledujúcom kroku štyrikrát skopíruje  a jeho kópie sa 

pripoja k pôvodnému modulu tak, že ich obvodové uzly sa pripoja každý jednou hranou k centrálnemu 

uzlu pôvodného modulu (obr. 10b). Nová, 25 – uzlová štruktúra sa opäť štyrikrát skopíruje a jej 

obvodové uzly sa pripoja k centrálnemu uzlu pôvodného malého päť uzlového modulu (obr. 10c).  

Centrálny päťuzlový modul kópií sa nepripája. Tento proces opakujeme tak dlho, pokiaľ sieť nie je 

dostatočne veľká na to, aby sa mohli zmerať jej vlastnosti, napríklad distribúciu stupňa  uzlov  a  

distribúciu  priemerných klasterizačných  koeficientov  uzla stupňa  k. Obe distribúcie spĺňajú zákony 

(5.1) a (5.2)  s exponentami 161.2=  a 1= , teda sieť, ktorá vznikne RB procesom rastu, je 

hierarchická a bezškálová zároveň.  



       Ravászová a Barabási, vedomí si toho, že  pravidelné pripájanie nejakého modulu k sieti sa 

v realite príliš nepozoruje, utvorili ďalšiu, náhodnú verziu svojho modelu. Sieť opäť začína rásť 

z rovnakého päť uzlového počiatočného modulu. Podobne ako v predošlom prípade sa tento modul 

v ďalšom kroku  štyrikrát skopíruje. Zlomok p uzlov týchto kópií sa pripojí preferenčným spôsobom 

k uzlom centrálneho modulu (obrázok 11). Sieť, ktorá vznikne takýmto procesom, je opäť sieťou 

hierarchickou a bezškálovou, čo znamená, že jej vlastnosti sú vyjadrené zákonmi (5.1) a (5.2) . 

Škálovacie exponenty   a   však závia od p tak, že oba s rastúcim p klesajú. Závislosti ( )p  a 

( )p  sú zatiaľ známe len z numerických simulácií, ich analytické vyjadrenie nepoznáme.  

 

 

 

Obrázok 10. Proces rastu hierarchickej bezškálovej siete podľa autorov Ravászovej a Barabásiho 

[15]. Začína sa z kompletného grafu o piatich uzloch a). V nasledujúcom kroku sa urobia štyri  

identické kópie základného modulu a uzly týchto kópií (okrem stredových) sa pripoja každý jednou 

hranou k centrálnemu uzlu pôvodného modulu b). Takto vzniknutý 25 uzlový modul sa opäť štyrikrát 

skopíruje a celý proces sa opakuje, lebo každý uzol každej kópie (okrem stredových uzlov a stredného 

päťuzlového modulu kópie) sa pripojí jednou hranou k centrálnemu uzlu základného modulu. Na 

obrázku c) sú tieto hrany pre prehľadnosť väčšinou vynechané.  Celý proces podobným spôsobom 

pokračuje ďalej. 

 

          Ďalším autorom, ktorý sa zaoberá vznikom hierarchickej organizácie uzlov v sieťach, je 

Alexei Vásquez [16]. Ako príklad mu slúži www sieť a citačná sieť. O štruktúre sietí však 

Vásquez uvažuje  trochu iným spôsobom ako Ravászová a Barabási [15]. Zamýšľal sa nad 

tým, ako surferi, blúdiaci po  sieti, objavujú a zároveň tvoria a modifikujú jej štruktúru. 



Vásquez  si položil otázku:  Môžu surferi  len pomocou náhodného blúdenia po sieti zistiť ako 

sieť vyzerá? Skôr ako sa pustíme do riešenia tejto otázky, definujme si, čo rozumieme pod 

www sieťou a citačnou sieťou. 

          Pod www sieťou myslíme takú sieť, v ktorej uzlami sú www stránky, a smerovaná 

hrana vznikne vtedy, keď sa na stránke nachádza hypertextový odkaz na nejakú inú stránku. 

V druhej, citačnej sieti, uzlom je článok. Tento uzol  spájajú smerované hrany so všetkými 

uzlami (článkami), ktoré sú v ňom citované. Matematickou reprezentáciou oboch týchto sietí 

je orientovaný graf. 

 

 

 

 

 

 

 

 

 

Obrázok 11. Ravász – Barabási model hierarchickej bezškálovej siete s náhodnosťou. Sieť rastie 

podobne ako jej deterministická verzia. Rozdiel spočíva v tom, že v každom kroku sa pripojí len 

zlomok p novopridaných uzlov. 

 

          Surfer, ktorý surfuje v takýchto sieťach,  ich štruktúr spočiatku vôbec nepozná. 

Blúdením po sieti ju pre seba objavuje, ale zároveň aj aktívne dotvára. Ak surfujeme 

napríklad po www stránkach, robíme to v podstate dvoma spôsobmi. Niekedy použijeme  

vyhľadávací program, pomocou ktorého skočíme náhodne na nejakú stránku. Ak sa nám 

stránka páči a jej obsah je zaujímavý, môžeme sa v ďalšom kroku rozhodnúť sledovať jeden 

z hypertextových odkazov na nej umiestnených, aby sme sa o problematike, ktorej sa stránka 

venuje, dozvedeli viacej. Alebo je pre nás stránka, na ktorej sa práve nachádzame 

nezaujímavá, a v ďalšom kroku jednoducho náhodne skočíme na inú stránku.  

          Podobne, keď študujeme novú odbornú problematiku, hľadáme články, ktoré by bolo 

dobré si prečítať. Prvú prácu k danej téme si buď vyhľadáme pomocou vyhľadávacieho 

programu, alebo nám ju niekto odporučí (náhodný skok na uzol). Ďalšie práce získame buď 

tak, že si stiahneme niektoré z tých článkov, ktoré daný článok citoval (sledovanie linky 

siete), alebo opäť použijeme vyhľadávací program či odporučenie kolegu, ktorý nám ponúkne 

nový náhodný výber prác.  



           Po sieti nemusí blúdiť len jeden surfer,  môže ich byť aj viacero. Surferi  tým, že po 

sieti blúdia, ju aj modifikujú, tvoria. Z času na čas totiž každý z nich pridá k už existujúcim 

uzlom nejakú novú hranu. Aby som bola konkrétnejšia, pri blúdení po www sieti nás niektorá 

stránka môže natoľko zaujať, že  na svoju stránku si na ňu pridáme hypertextový odkaz. 

Poprípade v citačnej sieti, ak je nejaký článok dobrý a užitočný pre náš výskum, citujeme ho 

v našom vlastnom článku. 

           Vásquez vyššie popísaný proces formalizoval takto: položil si otázku s akou 

pravdepodobnosťou bude istý uzol i navštívený jedným surferom. Táto pravdepodobnosť je 

súčtom pravdepodobnosti náhodného skoku na uzol i a súčtom pravdepodobnosti toho, že sa  

k uzlu i dostaneme po hrane od niektorého z jeho susedov j :  
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V rovnici (5.3) N je počet uzlov v sieti, ijJ  predstavuje maticu susednosti (viď. časť o teórii 

grafov) a 
out

jk  je počet hrán vychádzajúcich z uzla j. Veličina 
eq  označuje pravdepodobnosť 

toho, že surfer, nachádzajúci sa na nejakom uzle, sa rozhodne pokračovať  putovaním pozdĺž 

hrany. S pravdepodobnosťou  
eq−1   surfer skočí na iný, náhodne vybraný  uzol. 

         Keďže matica susednosti je zvyčajne veľká a riedka, rovnica (5.3) sa rieši pomocou 

aproximácie 
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Tu   predstavuje priemernú hodnotu pravdepodobnosti, že uzol, ktorý má hranu smerujúcu 

k uzlu i je navštívený surferom, pričom    je podielom priemernej pravdepodobnosti   

a priemerného počtu hrán, ktoré smerujú von z uzla [16]: 
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
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         Ako sme už spomínali, surfer pri blúdení po sieti sieť aj dotvára. Občas pridá 

k nejakému uzlu novú hranu. Preto sa s časom nemení len počet objavených uzlov 
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ale aj počet hrán v sieti 
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V predošlých  rovniciach 
a  je počet uzlov pridaných do siete za jednotku času, 

s   je počet 

surferov a 
vq    pravdepodobnosť toho, že jeden surfer pridá do siete novú hranu. Riešením 

rovníc (5.6) a (5.7) sú závislosti 

                                                                  tN a=                                                                (5.8) 

                                                              Ntqe vs =  .                                                       (5.9) 

Priemerný počet hrán, ktoré do uzlov siete vchádzajú je taký istý ako počet tých, ktoré z nich 

vychádzajú 
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kde e je opäť celkový počet hrán a N počet uzlov v sieti. Z rovníc (5.5) a (5.10) môžeme    

vyjadriť pomocou merateľných veličín ako 
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         Keď toto všetko vieme, vieme zistiť aká bude výsledná štruktúra siete? Bude 

hierarchická a bezškálová?  Inými slovami, vieme analyticky vypočítať distribúciu stupňa 

uzlov  a distribúciu priemerných klasterizačných koeficientov? Vásquez vo svojej práci [16] 

dokazuje, že vzniknutá sieť naozaj je  bezškálová a hierarchická zároveň.  

           Aby sme to mohli analyticky ukázať, potrebujeme najprv vypočítať, aká je 

pravdepodobnosť toho, že stupeň uzla, majúceho stupeň ink  vzrastie o jednotku. Táto 

pravdepodobnosť je daná vzťahom 

                                                              ( ) ( )inv

in kqkA = ,                                                  (5.12) 

teda súčinom pravdepodobnosti 
vq  pridania hrany surferom a pravdepodobnosti, že jeden 

surfer navštívi uzol so stupňom  ink . Ak do (5.12) dosadíme (5.4) a (5.11), dostaneme 
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Pomocou (5.13) je potom možné vypočítať distribúciu stupňa uzlov. Môžeme napísať tzv. 

rovnicu pomerov (rate equation), vzťah, ktorý hovorí, ako sa počet uzlov daného stupňa mení 

s časom   [10, 16] 
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Prvý člen rovnice (5.14) znamená, že uzol zo stupňom ink  dostaneme tak, že sa k uzlu so 

stupňom  1−ink  pripojí jeden koniec hrany. Počet uzlov so stupňom ink  sa naopak zmenší, 



ak sa k nejakému uzlu s takýmto stupňom pripojí koniec hrany. Toto popisuje druhý člen 

rovnice (5.14). Ak rovnicu  (5.14) upravíme a pravú stranu prepíšeme pomocou derivácie (čo 

pre dostatočne veľké siete môžeme urobiť [10, 33]), dostaneme  
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Rovnicu (5.15) vyriešime, ak použijeme vzťah (5.13) a predpoklad konečnej stacionárnej 

distribúcie stupňa uzlov ink
P  . Potom inin kk

NPn =  a z (5.15) po úpravách dostaneme 
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kde 
321 ,, CCC  sú konštanty. Riešením rovnice (5.16) je vzťah [16]  
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Sieť, ktorú dostaneme Vásquezovým procesom prehľadávania a dotvárania má teda 

bezškálovú štruktúru. Škálovací exponent   závisí od veličiny 
eq . 

          Čo však možno povedať o hierarchickej organizácii uzlov? Vásquez analyticky dokázal  

[16], že  

                                                                    ,1, = − kCk                                               (5.18) 

teda,  vzniknutá sieť je aj hierarchická.  

          Dá sa to ukázať takýmto spôsobom: Klasterizačný koeficient uzla i je daný vzťahom 

(2.3). To, čo sa s časom mení, je počet hrán medzi susedmi uzla i [16]: 
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kde ie  je počet hrán medzi susedmi uzla i a ostatné veličiny znamenajú to isté, čo 

v predchádzajúcich vzťahoch.  Použitím rovníc (5.4, 5.11, 5.13) a so zohľadnením toho, že 
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 možno za predpokladu, že k je dostatočne veľké  odvodiť 
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Integrovaním tejto rovnice za predpokladu, že ( ) 00 ==inke dostaneme klasterizačný 

koeficient kC  
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čo nie je nič iné ako (5.18). 



        Vázquezom popísané blúdenie po sieti však nie je procesom rastu siete, aj keď si možno 

predstaviť, že s ním úzko súvisí. Novoobjavený uzol môžeme považovať za uzol práve 

pridaný do siete. Neskôr uvidíme, že model rastúcej siete, v ktorom sa kombinujú lokálne 

zákony pripájania hrán a pripájanie uzlov, možno pretransformovať na Vásquezovu sieť 

a analyticky vyriešiť [17].   

 

                                                             

6.     Rôzne aplikácie teórie dynamických sietí 

     

           V tejto časti ukážem niekoľko aplikácií teórie dynamických sietí v jazykovede, biológii 

aj informatike. Budem uvažovať aj o tom, akým prínosom môže byť táto relatívne nová  

teória pre umelú inteligenciu.  

 

6.1.   Slovná sieť 

         Teória sietí priniesla zaujímavý pohľad na štruktúru lexikónu ľudského jazyka. Skúsme 

sa pozrieť na lexikón ako na slovnú sieť. Predstavme si, že slovo je uzol a ak dané slovo 

nejakým spôsobom interaguje s inými slovami, môžeme povedať, že je s nimi spojené hranou.  

          Čo to však znamená „slovo interaguje s iným slovom“? V zásade sú možné dva 

spôsoby interakcie slov. Prvý spôsob zvýrazňuje sémantický [7] a druhý spôsob syntaktický 

aspekt jazyka [8, 40, 41].  

          Predstavme si, že interakciu slov definujeme pomocou výkladového slovníku. Slovo, 

ktoré má v slovníku heslo, nech je uzlom. Všetky slová, ktoré naše slovo opisujú a sú zároveň 

aj samé slovníkovými heslami, považujeme s daným slovom za spojené hranou. Takýmto 

spôsobom môžeme vybudovať sémantickú slovnú sieť. Jej vlastnosti skúmal Motter a jeho 

kolegovia [7]. Merali distribúciu stupňa uzlov a ukázali, že s rastúcim stupňom klesá 

exponenciálne. Takáto slovná sieť (word web) teda nie je bezškálová.   

           Ak je však interakcia slov definovaná susedstvom vo vete, dostaneme syntaktickú 

slovnú sieť. V nej slovo opäť predstavuje uzol a všetky slová, ktoré sa vo vetách vyskytujú 

ako jeho najbližší susedia, sú s týmto uzlom spojené hranou. Takáto sieť sa teda buduje na 

základe veľkej databázy textov dostatočne dobre reprezentujúcich skúmaný jazyk.  Sieť sa 

tvorí takto: zvolíme nejaké slovo a vyhľadávame ho v textoch databázy. Zároveň vyhľadáme 

aj slová, ktoré sú najbližšími susedmi daného slova vo vetách, kde sa naše slovo vyskytuje. 

Potom to isté urobíme so susedmi zvoleného slova. 



           Ferrer a Solé analyzovali vlastnosti syntaktickej slovnej siete zostrojenej na základe 

textov anglického národného korpusu [8]. Distribúcia stupňa uzlov tejto siete naznačuje, že ju 

možno považovať za bezškálovú (5.1) avšak s tým rozdielom, že pozorujeme dva škálovacie 

režimy (obrázok 12) s dvoma rôznymi škálovacími exponentami. Pre uzly s menším stupňom 

škálovací exponent 5.11 =   a pre uzly s vyšším stupňom 7.22 = . Druhá hodnota 

škálovacieho exponentu je blízka (ale nie totožná) s hodnotou 0.3=BA .  

        V snahe vysvetliť, prečo v syntaktickej slovnej sieti existujú dva škálovacie režimy, 

vzniklo niekoľko prác [40, 41]. My sme experimentovali s rôznymi anglickými prekladmi 

Biblie [42] a rôznymi anglickými  textami z projektu Gutenberg [43]. Na obrázku 12 vidíme 

distribúciu stupňa uzlov biblických syntaktických sietí. V oboch prípadoch sme pozorovali 

podobný efekt ako Ferrer a Solé, len sme namerali trochu iné škálovacie exponenty 1  a 2 . 

Domnievame sa, že to môže to byť spôsobené horšou štatistikou, pretože naša sieť má desať 

krát menej uzlov ako sieť Ferrera a Solého. Počet slov v Biblii je totiž silne obmädzený a je 

mnoho takých slov, ktoré sa v Biblii vôbec nevyskytujú. V tomto smere Biblia pripomína 

špecializovaný odborný text. Preto je dosť dobre možné, čo potvrdzuje aj analýza textov 

z projektu Gutenberg [43], že 5.11 =  a 2  má hodnotu len o niečo menšiu ako 3=BA . 

 

Obrázok 12. Distribúcia stupňa uzlov pre syntaktickú slovnú sieť, ktorá bola skonštruovaná na báze 

anglických prekladov Biblie. Niektoré preklady sú staršie (Douay Rheims verzia, djv, rok vydania 

1582; King James verzia, kjv ,1611), iné moderné (American Standard verzia, asv,1901; Basic English 



verzia, bbe, 1941; New Revisited Standard verzia, nrsv, 1989). bbe je špeciálny prípad, lebo text bol 

umelo zjednodušovaný.  Siete majú tento počet uzlov: drv – 11423, kjv – 11624, asv – 10105, nrsv – 

14985, bbe – 4961.  

       Ferrer a Solé sa domnievajú, že existencia dvoch škálovacích režimov v distribúcii stupňa 

uzlov je spôsobená rozdielnou dynamikou periférie a jadra jazyka [8]. Pod jadrom jazyka 

rozumieme slová, ktoré tvoria základ jazyka používaný všetkými príslušníkmi danej 

jazykovej skupiny, bez ohľadu na vek, pohlavie, vzdelanie, či iné aspekty. Jadro jazyka 

obyčajne obsahuje okolo 410  slov, pomocou ktorých možno vyjadriť takmer všetko. 

V slovnej sieti sú slová z jadra jazyka väčšinou tie, ktoré sú s inými slovami dobre prepojené. 

Predstavujú teda obyčajne tie uzly slovnej siete, ktoré majú vyšší stupeň. Slová z jazykovej 

periférie sú jednak slangové výrazy, jednak odborná terminológia, jednak nové slová, teda tie, 

ktorým nemusí rozumieť každý. V slovnej sieti tieto slová majú zvyčajne menší stupeň, 

pretože sa vo vetách používajú v obmedzenom kontexte. Podľa Ferrera a Solého dynamika 

jadra jazyka je v podstate ustálená a možno ju modelovať pomocou BA procesu, zatiaľ čo pre 

jazykovú perifériu to neplatí.  

          S týmto vysvetlením nesúhlasia  Dorogovtsev a Mendes [41]. Autori práce [41] uvažujú 

takto: Kontext, v ktorom sa slová používajú, sa s časom mení. Väčšinou sa obohacuje. Vďaka 

tomu sa nové hrany do slovnej siete nepridávajú len s novými uzlami, ale môžu vzniknúť aj 

medzi slovami, ktoré sú už v slovníku dlhšie. Dorogovtsev a Mendes  vytvorili model, 

ktorého základom je  BA model (viď. časť 4.2), obohatený o nový proces tvorby hrán medzi 

starými slovami: Podobne, ako v BA modeli 

1.    Na  začiatku   rastu   siete máme   pár    uzlov pospájaných  niekoľkými  hranami. O  aký 

       počiatočný graf  sa  jedná  na  tom  v  podstate príliš nezáleží, lebo vlastnosti veľkej siete   

       počiatočný graf   neovplyvní. 

2.    Nech každú časovú jednotku odkiaľsi z vesmíru priletí jeden uzol a pripojí sa preferenčne  

       m hranami   k starým uzlom. 

3.   V tom   istom  okamihu  vznikne  medzi starými  uzlami  ( )10,2 cct    nových hrán.     

      Tieto nové hrany prepoja staré uzly preferenčným spôsobom. 

4.   Opakujeme  od  bodu 2. Sieť,  ktorej  finálnu  štruktúru   skúmame, musí  byť  dostatočne  

       veľká, čím dlhšie simulácia beží, tým presnejšie zmeriame charakteristiky siete. 

Dorogovtsevov – Mendesov model (DM model) je matematickým vyjadrením vyššie 

uvedených efektov: 
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V rovnici (6.1) integrál predstavuje normovaciu konštantu, teda súčet všetkých stupňov uzlov. 

k(s,t), tak ako v predošlých podobných rovniciach, predstavuje priemerný stupeň uzla, ktorý 

došiel do siete v čase s a pozorujeme ho v čase t. m je počet hrán, ktoré do siete prinesie 

každý nový uzol a 2ct je počet koncov hrán, ktoré prepoja staré uzly preferenčným spôsobom.  

          DM model (6.10) sa dá analyticky vyriešiť. Ak preintegrujeme obe strany rovnice cez 

s v hraniciach od  0 do t ( 
t

ds
0

),  dostaneme 
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Odtiaľ  s použitím hraničnej podmienky ( ) mttk =,  a vzťahu známeho z matematiky [36] 
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Keď (6.3) dosadíme do (6.1) a rovnicu (6.1) vyriešime, dostaneme výsledok [41] 
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čo vedie na distribúciu ako na obrázku 12 [41]. Pre uzly s indexom ts   (teda pre slová, 

ktoré majú šancu mať veľký stupeň, lebo prišli do siete skoro) škálovací exponent 32 =DM  

a pre uzly s indexom ts ~  škálovací exponent 5.11 =DM . 

         DM model teda, zakomponovaním procesu vzniku nových hrán medzi starými uzlami, 

dokázal vysvetliť vznik dvojrežimovej distribúcie stupňa uzlov (obrázok 12). Pozorný čitateľ 

si možno uvedomil aj to, že rovnica (6.1) je vlastne rovnicou s časovo závislou atraktivitou 

(fitness) uzla,  ak ( ) ( )cttsktA ,2= . Je tu však ešte jeden problém. Napriek tomu, že DM 

model je kvalitatívne úspešný, merania Fererra a Solého [8], ako aj naše vlastné [42, 43] 

ukazujú, že medzi experimentálnymi dátami a modelom je istá nepresnosť. V oboch 

prípadoch nameraný exponent measured

2  v strmšej časti distribúcie stupňa uzlov nedosahuje 



hodnotu 3, ktorú predikuje DM model. V menej strmej časti distribúcie je to v poriadku a 

5.111 == measuredDM  . Usúdila som teda [40], že to nie je náhoda a DM model nie je úplne 

postačujúcim modelom syntaktickej slovnej siete.  

        Aby som objasnila rozdiel medzi nameraným a vypočítaným škálovacím exponentom 

pre uzly s veľkým stupňom, navrhla som obohatiť DM proces rastu siete o ďalší efekt, ktorý 

by nebol v rozpore s pozorovaným vývojom lexikónu jazyka.  

        Skúsme spoločne trochu uvažovať. To, čo vyjadruje DM model, totiž že do lexikónu 

nielenže pribúdajú nové slová, ale aj staré slová sa dostávajú do nového kontextu, je pravda. 

Napríklad slovo Boh sa najprv používalo na označenie Slnka, Mesiaca, hromu, alebo iných 

prírodnýcho úkazov. Dnes má toto slovo  zložitý psychologicko – nábožensko – filozofický 

obsah. Počas vývoja slovníka (rastu slovnej siete) sa tento pojem začal používať v takých 

kontextoch (vznikli nové hrany medzi starými slovami), ktoré s pôvodným významom majú 

už máločo spoločné. Avšak slová  nielen získavajú, ale aj strácajú kontext. Napríklad slovo 

počítač ešte pred pár desiatkami rokov znamenalo pomenovanie  zariadenia zaberajúceho celú 

veľkú halu. Dnes si pod týmto pojmom skôr predstavíme malé PC, poprípade notebook. Veta 

„Odnes mi počítač na stôl, prosím.“ dnes nikoho neprekvapí. Ešte nedávno by sa však váš 

asistent takejto prosbe veľmi začudoval.  Ale príkaz „Nájdite veľkú miestnosť pre 

umiestnenie nového počítača“ by ho vôbec neprekvapil. Slovo „počítač“ sa v minulosti 

v kontexte „na stole“ nepoužívalo. Používalo sa v iných kontextoch, ktoré už dnes prestali 

platiť.  Vzhľadom na podobné úvahy som pôvodný DM proces rastu siete  modifikovala 

takto:  

1.    Na začiatku máme pár uzlov pospájaných niekoľkými hranami. O aký počiatočný graf sa    

       jedná na tom v podstate príliš nezáleží, lebo vlastnosti veľkej siete počiatočný graf príliš     

       neovplyvní. 

2.    Nech každú časovú jednotku odkiaľsi z vesmíru priletí jeden uzol a pripojí sa preferenčne  

       m hranami   k starým uzlom. 

3.   V tom istom okamihu vznikne medzi starými uzlami ( )10,2 cct   nových hrán. Tieto  

       nové hrany prepoja staré uzly preferenčným spôsobom. 

4.    Simultánne  s   javmi 2. a  3. sa náhodne  zvolí  rm     starých uzlov od ktorých sa odpojí  

      koniec  jednej hrany a prelinkuje sa preferenčne k inému uzlu. 

5.   Opakujeme od bodu 2. Sieť, ktorej finálnu štruktúru skúmame, musí byť dostatočne  

       veľká, takže čím dlhšie simulácia beží, tým presnejšie zmeriame charakteristiky siete. 



Model, matematicky popisujúci horeuvedené procesy, som nazvala modelom s prelinkovaním 

hrán (edge rewiring, teda RW model). Matematicky ho možno reprezentovať  integro – 

diferenciálnov rovnicov. 
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V rovnici (6.5) prvý člen na pravej strane  popisuje preferenčné pripájanie  mrctm ++ 2  

koncov hrán. m z nich prinesie nový uzol, ct hrán (2ct koncov hrán) sa vytvorí medzi starými 

uzlami a rm  hrán sa prepojí. Druhý člen rovnice (6.5) vyjadruje odpojenie jedného konca 

hrany od rm  náhodne zvolených uzlov.  

         Proces presmerovania hrán neovplyvňuje súčet všetkých stupňov uzlov a teda integrál 

v menovateli rovnice (6.5) je rovnaký ako v DM modeli  (6.3). Ak ho dosadíme do rovnice 

(6.5) a takto upravenú rovnicu vyriešime, dostaneme  
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Toto riešenie vedie na takú istú distribúciu stupňa uzlov ako v DM modeli, ale s rozdielnymi 

škálovacími  exponentami  [40]. Ak  ts   z rovnice (6.6) vypočítame 
m

mm rRW

2
22

−
+= .  

V prípade 5.1,~ 1 =RWts  .  Ak počet náhodne vybraných starých uzlov, od ktorých sa odpojí 

jeden koniec hrany je menší ako celkový počet  hrán prinesených novými uzlami, škálovací 

exponent pre uzly s veľkým stupňom bude menší ako 32 =DM  a väčší ako 2. V menej strmej 

časti distribúcie sa efekt prepájania hrán na hodnote škálovacieho exponentu neprejaví. 

       Naše merania biblickej slovnej siete ukazujú [42], že ak 13.22 =RW  a ak 

novoprichádzajúce slovo má v priemere okolo 10 spojení so starými slovami, potom 

7.7rm .  Vidíme teda, že RW model je celkom realistický.  Efekt prelinkovania hrán, ktorý 

bol pridaný k DM modelu, vysvetlil systematickú chybu medzi predpoveďou teórie a dátami. 

Navyše fakt, že slovo s časom mení kontext, patrí k prirodzeným javom vo vývoji lexikónu 

ľudského jazyka. RW model tak presnejšie vystihuje namerané dáta a odstraňuje nedostatky 

predošlých modelov.   

 

 

        



6.2.   Funkčná sieť mozgu v konkrétnom experimente. 

         Ako som už spomenula v tretej časti, funkčné siete mozgu sú príkladom ad hoc sietí. 

V týchto sieťach za uzol pokladáme voxel a hrana medzi dvoma voxelmi existuje vtedy, keď 

sú aktivity voxelov časovo skorelované [3].  

         Počas svojho pobytu na Department of Computer Science, Otago University, Dunedin, 

Nový Zéland,  som spolu s kolegyňami Ľubicou Beňuškovou a Liz Franz, mala možnosť 

študovať funkčnú sieť mozgu,  extrahovanú z nameraných dát [44].   Niekoľko meraných 

osôb sa podieľalo na experimente, pri ktorom mali striedavo rytmicky ťukať palcom a 

ukazovákom pravej a ľavej ruky. Rytmus ťukania určoval zvukový signál,  frekvencia 

ťukania približne zodpovedala jednému ťuknutiu palcom a ukazovákom  za sekundu.  

        Merali sme štyri zdravé osoby. Dve z nich boli ženy (subjekt 1 a 3, viď.  tabuľka 1, 2) vo 

veku 55 a 46 rokov. Dvaja muži (subjekt 2 a 4) mali 60 a 23 rokov. 

          Pred zberom fmri dát je vždy potrebné, aby mozog relaxoval. Požiadali sme preto 

frekventantov, aby chvíľku pokojne odpočívali. Potom nasledovalo prvé, šestnásťsekundové 

referenčné meranie, počas ktorého merané osoby neplnili žiadnu úlohu. Skúšobné meranie 

malo len pripraviť našich frekventantov na experiment a preto sme ho pri extrakcii funkčných 

sietí nebrali do úvahy.  Po tomto zahrievacom kole nasledovalo 6 dvadsaťsekundových 

meracích cyklov, počasť ktorých osoby plnili danú úlohu (task cyklus), striedaných šiestimi 

dvdsaťsekundovými cyklami oddychu (rest cyklus). Fmri signál mozgu sme merali 

v jednotlivých voxeloch. Voxely sú uložené v ôsmych vrstvách (obrázok 6). Matica voxelov 

v jednej vrstve má veľkosť 64 x 64, teda celkový počet voxelov je 64 x 64 x 8 = 32768. Jeden 

merací cyklus pozostáva z desiatich meraní. Keďže každý merací cyklus trvá dvadsať sekúnd, 

je zrejmé, že scanner získa dáta z celého mozgu  v priebehu dvoch sekúnd. 

       Namerané dáta sme potom spracovali nasledovným postupom: V prvom rade sme pre 

každý subjekt spriemerovali všetky rest aj task merania. Potlačili sme tým šum a zvýraznili 

signál. Pred spriemernením, sa hodnoty signálov v cykloch rest  aj task pohybovali 

v rozmedzí 0 až 500  jednotiek. Je známe [45], že rozdiel hodnôt rest a task signálu nie je 

veľký,  v najlepšom prípade to predstavuje päť percent.  Preto sme sa zaujímali aj o pozitívne 

aj o negatívne nadprahové časové korelácie signálov. V ďalšom kroku sme spočítali 

korelačný koeficient pre 80 miliónov náhodne zvolených párov voxelov. Korelačný koeficient 

sme určili pomocou vzťahu  
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kde  ( )( ) ( ) ( ) 222 tststs −=  , ( )ts   je aktivita voxelu v čase t (meraná v nejakých jednotkách) a 

.  predstavuje časové priemerovanie. Do úvahy sme brali iba tie voxely, ktoré mali 

nadprahovú aktivitu (100 jednotiek v prvom prípade, alebo 200 jednotiek v druhom prípade). 

Pre obidve nadprahové aktivity sme zvolili prahový korelačný koeficient 8.0=cr . Výsledky 

pre rôzne prahové aktivity sa v zásade v ničom nelíšia, preto sme ďalšie hodnoty prahových 

aktivít nepoužili. Skúmali sme však, ako bude vyzerať extrahovaná funkčná sieť mozgu ak by 

bol prah aktivity voxelov  nulový. V tomto prípade sa výsledky výrazne líšili. Sieť stratila 

akúkoľvek zaujímavú štruktúru a stala sa náhodnou. Domnievame sa, že napriek 

spriemerovaniu signálov, malé aktivity voxelov sú vlastne tvorené šumom.  Vlastnosti 

extrahovaných funkčných sietí pre obidve prahové hodnoty aktivít voxelov sú zhrnuté 

v tabuľkách 1 a 2. 

 

Tabuľka 1.  Vlastnosti funkčnej siete mozgu extrahovanej z nameraných dát. Prah aktivity je 100 

jednotiek, korelačný prah je 8.0=cr . N je počet uzlov siete, C predstavuje klasterizačný koeficient 

siete, L je separácia uzlov  a   je škálovací exponent mocninnej časti distribúcie stupňa uzlov. 

 

 

Tabuľka 2. Vlastnosti funkčnej siete mozgu extrahovanej z nameraných dát. Prah aktivity je 200 

a korelačný prah je taký istý ako v predošlej tabuľke, 8.0=cr . Ostatné veličiny znamenajú to isté ako 

v predchádzajúcej tabuľke. 

 

           Aktivitu voxelov sme považovali za významne skorelovanú, ak vypočítaná hodnota 

korelačného koeficientu bola väčšia ako 8.0=cr  (korelácia), alebo menšia ako 



8.0−=cr (antikorelácia).  Štatistické a topologické charakteristiky siete sme vypočítali s 

pomocou voľne dostupného nástroja na analýzu sietí Network Workbench [34]. 

 

Obrázok  13  .  Distribúcia stupňa uzlov vo funkčnej sieti extrahovanej pre subjekt 2. a)  zobrazenie v 

log – log škále pre cyklus rest, b) zobrazenie v log – log škále pre cyklus task, c) zobrazenie v log – 

linear škále pre cyklus rest, d) zobrazenie v log - linear škále pre cyklus task. 

 

          Aby sme zistili, či extrahované siete sú sieťami malého sveta, vypočítali sme 

klasterizačný koeficient a separáciu uzlov náhodného grafu s rovnakým počtom uzlov 

a s rovnakým priemerným stupňom uzla ako majú funkčné siete:   
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Crandom =                                                       (6.8) 
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kde N je počet uzlov a k  je priemerný stupeň uzla. Pre siete ekvivalentné našim 

extrahovaným funkčným sieťam 43 1010 −− −=randomC  a 4randomL . Či sieť má vlastnosti siete 

malého sveta možno určiť pomocou tzv. indexu malého sveta [1] 
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Vo všetkých našich sieťach bol tento index vysoký ( 10010~ − ). Z toho usudzujeme, že 

funkčné siete, extrahované z  nameraných dát, sú zároveň sieťami malého sveta.       

         Sú funkčné siete mozgu aj bezškálovými sieťami? Ak sme lineárnu časť log – log 

zobrazenia distribúcie stupňa uzlov  preložili priamkou, dostali sme pre všetky siete 

škálovacie exponenty s hodnotami v rozmedzí 5.20.1   .  Treba však dodať, že nie vždy 

bola lineárna časť distribúcie dostatočne výrazná.  Platí to hlavne pre siete získané v rest 

cykle. Z tabuliek 1 a 2 možno vidieť, že hodnoty škálovacích exponentov pre prípad rest 

a task sa pre jednotlivé merané osoby príliš nelíšia. Rozdiely však pozorujeme  medzi 

rôznymi osobami. Môže to byť len náhoda, avšak je dosť dobre možné, že pre tieto 

individuálne rozdiely existuje nejaký, zatiaľ nezistený, dôvod. Na to, aby sme ho mohli nájsť, 

potrebujeme väčší štatistický súbor meraní.  

           Fakt, že hodnoty škálovacích exponentov v rest a task cykle sa nelíšia, potvrdil aj 

Eguíluz a jeho spolupracovníci [26].  Zistil, že rozdiely neexistujú  ani vtedy, keď je 

kognitívna úloha náročnejšia (počúvanie hudby).  

            Ak sa lepšie pozrieme na obrázok 13, vidíme, že tvar distribúcie stupňa uzlov  sa pre 

rest a task cyklus dosť líši. Hoci na obrázku sú zobrazené len distribúcie jedného subjektu, 

rozdiel je viditeľný vo všetkých štyroch prípadoch. Spočíva v tom, že lineárna časť distribúcie 

je výraznejšia v prípade task cyklu ako v prípade rest cyklu (obrázok 13a, b). Znamená to, že 

bezškálová štruktúra funkčnej siete sa zvýrazňuje, ak mozog pracuje na nejakej úlohe. Je 

výraznejšia  dokonca aj vtedy, ak je táto úloha taká  jednoduchá ako rytmické ťukanie 

prstami. Spomenutý rozdiel možno ešte lepšie pozorovať pri  zobrazení v  log – linear škále 

(obrázok 13c, d), kde je závislosť lineárnejšia v cykle rest, čo by naznačilo skôr 

exponenciálne klesajúcu distribúciu stupňa uzlov.    

            Na záver konštatujeme, že všetky siete, nezávisle od toho, či boli extrahované z dát 

v cykle rest alebo task, majú charakter sietí malého sveta. Zdá sa tiež, že funkčné siete majú 

vyšší stupeň organizácie v štádiu task, čo vidieť z toho, že distribúcia stupňa uzlov v log – log 

zobrazení má v task perióde výraznejšiu lineárnu časť ako v rest perióde. Aby sme však mohli 

urobiť presnejšie závery, potrebujeme omnoho väčší štatistický súbor meraní. 

           Určite by bolo zaujímavé vedieť, aký je vzťah funkčnej a anatomickej neurónovej siete 

mozgu. Niektoré štúdie dokazujú [46], že neurónová sieť mozgu je síce sieťou malého sveta, 

ale nie je bezškálovou sieťou. Z hľadiska prác Equíluza a kol. [26] a van den Heuvela a kol., 



a tiež Chialva [3], ktorí tvrdia, že funkčné siete mozgu sú bezškálové, je tento výsledok 

prekvapujúci. Naša práca však ukazuje, že bezškálovosť štruktúry funkčných sietí mozgu, 

minimálne v perióde rest, možno spochybniť.  

           Domnievame sa, že ďalší výskum funkčných sietí mozgu, ktorý by študoval funkčné 

siete mozgu vo vzťahu k jeho anatomickej štruktúre, by mohol do veci vniesť viacej svetla. 

 

6.3.   Hierarchia v rastúcej sieti s lokálnymi pravidlami. 

           V kapitole 5 sme  hovorili o hierarchických bezškálových sieťach. Rozobrali sme dva  

procesy, pomocou ktorých vzniká v sieťach hierarchia, a to bez toho, aby sa narušila 

bezškálová štruktúra. Prvý proces pripájania fixnej štruktúry uzlov je tak trochu umelý [15].  

Aj keď ho autori znáhodnili, v skutočnosti len ťažko možno nájsť sieť, ktorá by rástla 

pripájaním pravidelnej štruktúry uzlov.  

         Na druhej strane Vásquezov model [16] hovorí skôr o tom, ako objavujeme, poprípade 

dotvárame sieť, ktorá už existuje. My sa však zaoberáme rastúcimi sieťami. Je preto namieste 

otázka, či existuje nejaký jednoduchý proces rastu siete, podobný napríklad BA procesu, ktorý 

by sme poznali zo skúsenosti, a ktorý by prirodzeným spôsobom vytváral hierarchické 

bezškálové siete. Preferenčné pripájanie uzlov síce vedie na bezškálovú, ale nie hiererchickú 

štruktúru siete  [9, 10, 33].  

          Zamysleli sme sa nad touto otázkou [17] a vytvorili sme model rastúcej siete, ktorý sme 

nazvali  modelom riadeným klasterizáciou (CD model, clustering driven model). Sieť riadená 

klasterizáciou rastie takýmto procesom: 

1.    Na začiatku máme pár uzlov pospájaných niekoľkými hranami. O aký počiatočný graf sa    

       jedná na tom v podstate príliš nezáleží, lebo vlastnosti veľkej siete počiatočný graf vôbec     

       neovplyvní. 

2.    Nech každú časovú jednotku odkiaľsi z vesmíru priletí jeden uzol a pripojí sa m hranami    

       k starým uzlom. Uzly sú indexované časom svojho príchosu do siete s.  

3.    Spôsob  pripojenia  je  nasledovný. Jedna  hrana sa pripojí s  najväčšou pravdepodob-  

        nosťou  k tomu  uzlu, ktorý má najväčší klasterizačný koeficient. Pripojí sa s k nemu  

        pravdepodobnosťou 
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 a 
iC  nie je nič iné ako klasterizačný koeficient uzla i (2.3). Môžeme    

       implementovať   obe    klasterizáciou     riadené     pravdepodobnosti     pripájania    hrán,     

       pravdepodobnosť   (6.8)   má    však    tú  výhodu,   že    je    nezávislá   od  počiatočného   

       modulu. Ostatných   1−m    hrán  sa   pripojí náhodne k susedom uzla i.  

       Dovolím    si  ešte    pár    poznámok  k  rovniciam  (6.11),   (6.12).   Ak   je klasterizačný  

       koeficient   uzla  s   nulový,  potom  pravdepodobnosť  ( )s   (6.11)    pripojenia      hrany       

       k tomuto  uzlu  je   nulová,  zatiaľ čo  z  rovnice  (6.12)  vyplýva, že  aj v tomto    prípade    

       existuje  malá,  nenulová  pravdepodobnosť ( )snew   pripojenia  hrany k uzlu   s.      

       ( ) tCtW = ,  kde C  je  priemerný klasterizačný   koeficient uzlov siete.  C     je   pre    

       dostatočne veľké t  nezávislý od času, a preto sa  pravdepodobnosti (6.11)  a  (6.12)   pre   

       →t     správajú    rovnako. Ako   vidieť z  obrázku 14,    siete  modelované   pomocou   

        pravdepodobností  (6.11) a (6.12)  aj vizuálne  vyzerajú  veľmi  podobne. 

 4.   Opakujeme od  bodu  2. Sieť,  ktorej  finálnu  štruktúru  skúmame,  musí  byť  dostatočne  

        veľká, pretože čím dlhšie simulácia beží, tým presnejšie zmeriame  charakteristiky  siete.     

Integro  - diferenciálnu   rovnicu,   ktorá    popisuje   hodnoverne   tento  proces,  sa  nám      

zatiaľ  nepodarilo   napísať. Podarilo sa nám   však  analyticky ukázať, že   zjednodušená 

verzia CD modelu vedie na hierarchickú a bezškálovú štruktúru siete.  

          V zjednodušenej verzii CD modelu (nazvanej SCD modelom, simplified clustering 

driven model) každý uzol  prichádzajúci do siete sa do nej pripojí len dvoma hranami. Jedna 

hrana sa pripojí k nejakému uzlu s v sieti a to s pravdepodobnosťou úmernou klasterizačnému 

koeficientu starého uzla s (6.11, 6.12). Druhá hrana sa pripojí náhodne na niektorý z uzlov 

z najbližšieho susedstva uzla s. Pod najbližším susedstvom rozumieme také uzly, ktoré sú 

s uzlom s spojené hranou. Dve nové hrany, starý uzol, jeho sused a nový uzol a tiež hrana 

medzi starým uzlom a jeho susedom tak vytvárajú trojuholník (obrázok 15) . 

            Akú reálnu situáciu by mohol takýto proces modelovať? Domnievam sa, že to može  

byť, napríklad, vznik záujmových skupín. Predstavme si, že existuje nejaká skupina turistov. 

Turista, ktorý sa chce k nej pripojiť, najpravdepodobnejšie nájde vedúceho tejto skupiny, 

človeka, ktorý plánuje výlety, poprípade udržiava a aktualizuje stránku na internete. Nový 

potenciálny člen klubu kontaktuje túto kľúčovú osobu.  Kľúčová osoba turistickej skupiny 

obyčajne pozná väčšinu členov, ktorí sa poväčšine tiež vzájomne poznajú. V jazyku sietí to 

znamená, že kľúčová osoba má veľký klasterizačný koeficient. Keď sa nový turista v klube 

objaví, nadviaže kontakty aj s inými členmi skupiny. Samozrejme, niektorí z nich sú členmi aj 



iných turistických klubov, poprípade iných záujmových skupín (klastrov) a sprostretkujú tak 

kontakt medzi rôznymi skupinami. 

 

 

Obrázok 14. Vizualizácia CD modelu. Horný obrázok predstavuje sieť kde sa uzly pripájajú 

spôsobom (6.11), dolný obrázok spôsobom (6.12). Obe siete majú sto uzlov a 3=m .  

 

             Fakt, že v každom časovom okamihu sa v sieti vytvorí nový trojuholník, je z hľadiska 

analytických výpočtov veľmi dôležitý. Klasterizačný koeficient uzla s je daný vzťahom  
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Obrázok 15.  Spôsob pripájania uzlov v SCD modeli. Začíname z malej siete o troch uzloch (čierne 

uzly a čierne plné hrany). Z nich každý ma klasterizačný koeficient rovný jednej. V nasledujúcom 

okamihu (t=1) pripojíme uzol s indexom s=1, ktorý prinesie dve nové hrany (m=2, tenká plná čiara). 

Pripojenie jednej hrany k uzlu i je riadené klasterizáciou, druhá sa náhodne pripojí do susedstva uzla i. 

Takto proces pripájania uzlov pokračuje ďalej. 

                  

kde ( )se  je počet hrán medzi susedmi uzla s a ( )sk  je stupeň uzla s. Pretože v SCD modeli 

v každom kroku vznikne v sieti nový trojuholník uzlov, počet hrán ( )se  je daný rovnicou  

( ) ( ) 1−= skse . Ak toto dosadíme do (6.13), potom v SCD modeli platí 
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= .                                                       (6.14) 

          Ďalšia otázka, ktorú si možno položiť znie: Čo je v SCD procese najdôležitejšie pre 

vznik bezškálovej štruktúry v sieti? Je to pripájanie uzlov riadené klasterizáciou? Aby sme 

odpovedali na túto otázku, zohľadníme fakt (6.14) a vyriešime BA model, v ktorom nie je 

preferencia pripojenia hrany k uzlu s úmerná k, ale 1−k  : 
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Riešenie tejto rovnice je [17] 
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s 964.2=a .  Z časti 4 tejto práce vieme, že riešenie (6.15) nevedie na takú distribúciu stupňa 

uzlov, ktorá charakterizuje bezškálovú sieť. Pripájanie hrán riadené klasterizáciou teda 

nezodpovedá za  bezškálovú štruktúru vzniknutej siete. Toto možno potvrdiť numerickými 

simuláciami modifikovaného SCD modelu, v ktorom pripojenie prvej hrany nie je riadené 

klasterizáciou, ale ju pripojíme k uzlu s náhodným, alebo preferenčným spôsobom. Druhú 

hranu opäť pripojíme náhodne na bezprostredného suseda uzla s. Numerické simulácie 

ukazujú, že sieť ostáva aj v takýchto prípadoch bezškálovou.  

            Prečo? Odpoveď je jednoduchá. Pripájanie druhej hrany do susedstva uzla s je 

v podstate skrytým preferenčným pripájaním, pretože uzol s veľkým stupňom bude susedom 

mnohým uzlom. Preto pravdepodobnosť, že sa k nemu druhá hrana pripojí je väčšia, ako pre 

uzol s malým stupňom, ktorý je susedom len malému počtu uzlov. Ako vieme z BA modelu, 

preferenčné pripájanie je základným mechanizmom vzniku bezškálovej štruktúry sietí. 

            Treba si uvedomiť aj ďalší fakt. SCD model je vlastne ekvivalentný a možno ho 

transformovať na Vásquezov model s jedným surferom ( 1=s ) a s jednotkovou 

pravdepodobnosťou zvýšenia stupňa navštíveného uzla ( 1=q ). Nazvime tento variant 

Vásquezovho modelu V modelom. Vo V modeli blúdenie po sieti začína skokom surfera na 

náhodne zvolený uzol. V nasledujúcom kroku s pravdepodobnosťou 
eq  sleduje hranu 

incidentnú s týmto uzlom a s pravdepodobnosťou 
eq−1  skočí na nový, náhodne vybraný 

uzol. Distribúciu stupňa uzlov pre V model vypočítame z tejto rovnice pomerov [17] 
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pričom (6.17) platí pre 0k  a 
kA  je pravdepodobnosť, že uzol so stupňom k zvýši svoj 

stupeň o jednotku.  Počet uzlov objavených surferom za jednotku času je aj v tomto prípade 
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SCD model sa od V modelu líši aj spôsobom, akým sa doňho pridávajú nové hrany. 

V najjednoduchšej verzii V modelu  v každom kroku pridávame do siete  buď jednu hranu, 

alebo jednu hranu a jeden uzol. V SCD modeli v každom okamihu pridáme dve hrany a jeden 



uzol. Preto, aby sme mohli SCD model pretransformovať na V model, musíme položiť 

2

1
=eq . Navyše  vzťah pre 

kA  (5.13) upravíme tak, že zohľadníme (6.14): 

                                                       ( )











+−= kq

Ck
q

N
A aeek 

2
1

1
.                                 (6.19) 

V (6.19) C  je priemerný klasterizačný koeficient.  Ak do (6.17) zavedieme predpoklad 

( )kNPnk = , kde ( )kP  je stacionárna pravdepodobnosť toho, že uzol má stupeň k, potom 

v spojitej aproximácii dostaneme 
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Keďže ( )kP  nezávisí od času z rovnice (6.18) a (6.20) dostaneme  
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Riešenie tejto rovnice vedie na  

                                                              ( )
eq

kkP
1

1, += −  ,                                     (6.22) 

čo je v súlade aj s Vásquezovým riešením a potvrdzuje tak fakt, že pripájanie hrán riadené 

klasterizáciou nie je z hľadiska bezškálovej štruktúry rozhodujúce.  

          Klasterizačný koeficient v SCD modeli je daný vzťahom (6.14). Preto pre SCD model 

v rovnici (5.2) škálovací exponent 1=  . Ak vieme, že pre SCD model 
2

1
=eq , potom 

škálovací exponent distribúcie stupňa uzlov 3=   (6.22). Tieto výsledky potvrdila aj 

numerická simulácia SCD procesu (obrázok 16).   

            Vráťme sa teraz ku všeobecnému CD  modelu, kde v každom kroku pribúda do 

systému viacej hrán ( 2m ). Numerické simulácie CD modelu ukazujú, že základný rozdiel 

medzi CD modelom a Vásquezovým modelom je ten, že   vo Vásquézovom modeli závisí od 

parametra eq . V CD modeli 3=  pre všetky hodnoty m. Toto platí aj pre modely, kde 

pripojenie prvej novej hrany je náhodné, poprípade preferenčné. 

 



 

Obrázok 16. Namerané distribúcie stupňa uzlov a klasterizačných koeficientov v SCD modeli, 

v ktorom 2=m  a počet uzlov 20000=N . 

 

            Pre všeobecný CD model sme zmerali aj iné charakteristiky [17] Zmerali sme 

napríklad priemerný klasterizačný koeficient a separáciu uzlov. Priemerný klasterizačný 

koeficient je konštantný a sieť má aj vlastnosti siete malého sveta, pretože priemerná 

najkratšia vzdialenosť medzi uzlami rastie s počtom uzlov siete logaritmicky.  Keď meníme 

počet pripájaných hrán m, numerická simulácia CD modelu potvrdzuje nezávislosť exponentu 

  od m, zatiaľ čo exponent   riadiaci distribúciu priemerných klasterizačných koeficientov 

uzla stupňa k sa s m mení ako  − m , kde 1.0= . 

           Skonštatujme na záver niekoľko faktov. V práci [17] súhlasíme s Vásquézom [16], že 

spôsob pripojenia prvej hrany nie je rozhodujúci pre výslednú topológiu siete. To, čo je 

naozaj dôležité, sú lokálne pravidlá, teda fakt, že 1−m  hrán sa vždy náhodne pripojí do 



susedstva vybraného uzla. Proces rastu siete, kde sa uplatňujú takéto lokálne pravidlá, vedie 

na bezškálovú a zároveň hierarchickú topológiu siete. Na bezškálovú preto, že lokálne efekty 

zabezpečujú virtuálne preferenčné pripájanie nových hrán. Ak má totiž nejaký uzol veľký 

stupeň, potom má veľa susedov a pravdepodobnosť, že jedna z 1−m   nových hrán sa pripojí 

práve k nemu je o to vyššia. Na hierarchickú štruktúru vedie takýto proces preto, že v každom 

kroku sa do siete pripája viac menej pravidelný útvar, pozostávajúci z jedného nového 

vrcholu a m nových hrán. Ako sme videli v SCD modeli, je týmto útvarom trojuholník uzlov a 

hrán. V tomto SCD model pripomína Ravász – Barabási model hierarchickej siete [15]. 

Môžeme teda skonštatovať, že sme našli  proces rastu siete, ktorý je prirodzený a v ktorom 

lokálne procesy dominujú a vedú k tomu, že sieť je zároveň bezškálová a hierarchická.   

 

6.4      Siete a umelá inteligencia 

           Umelá inteligencia je informatická vedná disciplína, ktorá hojne využíva poznatky  

z iných vedných oblastí. Jednou z úloh, ktoré si umelá inteligencia kladie, je prinútiť stroje 

k tomu, aby ich správanie pripomínalo inteligentné správanie človeka. Takéto stroje – roboty 

potom môžu nahradiť človeka všade tam, kde je to nebezpečné, poprípade pre ľudský 

organizmus príliš namáhavé. Na druhej strane, umelá inteligencia si kladie aj iné ciele, ciele 

blízke tým, ktorými sa zaoberajú kognitívne vedy. Jej úlohou je aj lepšie porozumieť, čo to 

vlastne inteligencia je. Ako sa inteligentné živé tvory učia? Ako sa  rozhodujú, ako konajú 

a čo toto konanie ovplyvňuje ?  

           Teória sietí môže byť nápomocná umelej inteligencii pri oboch jej hlavných úlohách. 

Dosť preto prekvapuje, že sa v umelej inteligencii doteraz prakticky nevyužíva. Komunikačné 

siete robotov by mali byť navrhnuté tak, aby zabezpečovali bezproblémové šírenie signálu. Aj 

komunikačná sieť iných umelointeligentných agentov (nech je to hoci aj ad hoc sieť) by mala 

spĺňať isté parametre, aby komunikácia netrpela slabým signálom, veľkým šumom 

a podobnými nedostatkami. Umelej inteligencii by mohla pomôcť aj znalosť toho, že istá 

sieťová  štruktúra odoláva lepšie náhodným poruchám, iná zasa lepšie cieleným útokom [33].  

          Porozumenie ľudskej inteligencii je úzko spojené s výskumom mozgu. Pretože mozog 

je vo svojej podstate sieťou poprepájaných neurónov, spojitosť teórie sietí a umelej 

inteligencie sa tu priam ponúka. Aj výskum funkčných sietí mozgu môže pomôcť 

k porozumeniu kolektívneho sa správania neurónov pri jeho činnosti. 

          Verím, že nie je ďaleko doba, keď umelá inteligencia a teória sietí nájdu spoločnú reč 

a obohatia nás o nové zaujímavé výsledky.  

 



 

7.     Perspektívy ďalšieho výskumu 

           

          Ďalší výskum sietí, tak ako doteraz, pôjde dvoma smermi: teoretickým a aplikačným. 

V oblasti teórie sietí sa, napríklad aj na našej fakulte, pokračuje v štúdiu hierarchickej 

štruktúry sietí. Nie sú zaujímavé len mechanizmy, ktorými hierarchická štruktúra v sieťach 

vzniká, ale aj stabilita tejto štruktúry. Do akej miery možno porušiť lokálne zákony pripájania 

nových hrán, aby sa hierarchická štruktúra zachovala? Je tento prechod pozvoľný, alebo má 

charakter náhleho skoku? Čo sa stane s bezškálovosťou, keď sa naruší hierarchia? Toto všetko 

sú zaujímavé a aktuálne otázky. 

          Ďalšia vetva teoretického výskumu povedie k tvorbe modelov, ktoré budú ešte lepšie 

vystihovať vlastnosti reálnych sietí. Binárne siete pomaly treba nahradiť komplikovanejšími 

modelmi, napríklad aj takými, v ktorých každá hrana existuje len s istou pravdepodobnosťou. 

Pre šírenie signálov je dôležitá aj priepustnosť hrany – tu sa teória sietí dotýka perkolačnej 

teórie. Prvé lastovičky v tomto smere výskumu sa už objavili [47].  

          Z hľadiska praxe je dôležitý aj výskum ad hoc sietí. Vo výskume mozgu bude 

pokračovať skúmanie funkčných sietí a závislosti ich štruktúry od obtiažnosti kognitívnej 

úlohy. Významná je aj otázka ako funkčné siete mozgu súvisia s anatomickou  štruktúrou 

mozgu. Dá sa odvodiť ako bude funkčná sieť vyzerať, ak poznáme anatomickú štruktúru 

oblastí mozgu, zodpovedných za vnímanie daného typu signálu?  

           Teória sietí začína pomaly prenikať aj do biológie. Skúmajú sa rôzne typy 

interakčných sietí [6] a tento výskum bude určite pokračovať ďalej aj v budúcnosti. 

Biologický výskum, podobne ako výskum sociálnych sietí bude úzko spojený s pokrokom 

v teórii a s analýzou realistickejších sieťových modelov. 

            Verím, že tento prehľad teórie dynamických sietí ukázal čitateľovi krásu, ale aj úskalia 

ich výskumu. Ak sa čitateľ rozhodne prispieť k nemu svojím dielom, účel tejto kapitoly bol 

viac ako napnený. 
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